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Increases in the abundance of woody species have been reported to affect the provisioning of ecosystem services 
in drylands worldwide. However, it is virtually unknown how multiple biotic and abiotic drivers, such as climate, 
grazing, and fire, interact to determine woody dominance across global drylands. We conducted a standardized 
field survey in 304 plots across 25 countries to assess how climatic features, soil properties, grazing, and fire affect 
woody dominance in dryland rangelands. Precipitation, temperature, and grazing were key determinants of tree 
and shrub dominance. The effects of grazing were determined not solely by grazing pressure but also by the 
dominant livestock species. Interactions between soil, climate, and grazing and differences in responses to these 
factors between trees and shrubs were key to understanding changes in woody dominance. Our findings suggest 
that projected changes in climate and grazing pressure may increase woody dominance in drylands, altering their 
structure and functioning.

INTRODUCTION
Drylands are defined as areas with an aridity index (precipitation/po-
tential evapotranspiration) below 0.65. They encompass a wide vari-
ety of biomes, including deserts, grasslands, steppes, shrublands, and 
savannas. Drylands are experiencing rapid changes in their struc-
ture and functioning due to human-induced global changes, which 
are affecting their capacity to deliver essential ecosystem services (1, 
2). One of the most noticeable changes being observed across global 
drylands is the increasing abundance of woody plants, especially in 
grass-dominated ecosystems (3–7). The ratio between the cover of 
woody and herbaceous species is a key feature of terrestrial ecosys-
tems, and variations in this ratio have been related to both positive 
(e.g., increases in carbon sequestration) and negative (e.g., declines in 
forage quantity and quality) changes in the delivery of ecosystem ser-
vices (5, 8–10). Understanding the drivers of woody plant cover in 
drylands, which represent 41% of terrestrial surface and are expected 

to be among the ecosystems most affected by climate change (11, 12), 
is thus critical for predicting and managing the impacts of global 
change on terrestrial ecosystems. Yet, most existing literature on 
woody dominance is based on humid (non-dryland) or subhumid 
savannas, and we still lack a global assessment of the main drivers of 
woody vegetation across other dryland biomes (6, 13, 14).

The drivers of the abundance of woody species are diverse (14–
17) and include biotic interactions (18), spatial and temporal varia-
tion in the availability of resources due to climatic and soil factors 
(19–21), and disturbance regimes such as fire or grazing (7, 22). Pre-
vious regional and subcontinental studies investigating coexistence 
between woody and herbaceous plants have mainly focused on the 
role of climate, soil heterogeneity, disturbances, and increasing atmo-
spheric CO2 (15, 19, 23–25). For example, increases in maximum tree 
cover and mean woody cover with increasing mean annual precipi-
tation (MAP) have been described for African savannas (4, 13). In 
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addition, coarser soil textures are associated with higher shrub and 
tree cover because of increased infiltration and water availability in 
deeper soil layers (17, 19, 21). Other key aspects of the precipitation 
regime, such as seasonality, have been reported to be key drivers of 
savanna structure and dynamics (26–30). However, there are still 
considerable uncertainties about how ongoing global warming will 
affect woody dominance in drylands, as findings regarding the influ-
ence of temperature on the population dynamics and cover of woody 
species reveal contrasting outcomes (4, 24, 31, 32).

Grazing and fire are key disturbances known to have large effects 
on dryland vegetation (1, 33–36). However, there is a lack of consen-
sus about how grazing and fire determine woody dominance pat-
terns. Grazing has been reported to increase (4, 7), decrease (21, 37), 
or have no effect (13, 38) on woody abundance in drylands, while 
fire has been reported to decrease (4, 39) or not affect woody abun-
dance at all (40, 41). These contrasting results indicate that the 
actual effects of grazing and fire may depend on other interact-
ing factors. Grazing effects on woody dominance may depend on 
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stocking rate and herbivore species (37, 42, 43). Aridity can play an 
important role too, as increases in grazing pressure could potential-
ly promote shifts from grasslands to shrub steppes to deserts under 
increasing aridification (44). Declines in water availability under 
increased aridity can also represent a bigger constraint to woody 
cover than the fire regime itself (40, 41). Further, the connectivity 
among vegetation patches is usually lower at high aridity sites, re-
ducing the probability of fire spread (45). We still lack a global syn-
thesis of how grazing and fire may change woody cover and how they 
interact with other variables such as herbivore identity and aridity.

There is growing recognition of the need to simultaneously con-
sider multiple drivers and their interactions to accurately predict and 
manage vegetation change (4, 29, 34). While climatic drivers can be 
better studied at large spatial scales, others, such as grazing, require 
detailed local-scale information to elucidate the mechanisms that 
determine vegetation responses. Previous studies carried out at local 
scales (46) have resulted in context-dependent hypotheses, whereas 
those at regional or subcontinental scales (4, 13) lacked detail on the 
local disturbance regime. In addition, previous large-scale studies 
usually reported correlations instead of explicitly accounting for 
grazing pressure differences at the local scale. Overcoming these 
limitations requires a comprehensive and standardized assessment of 
the local effects of increasing grazing pressure and aridity on woody 
dominance across drylands worldwide.

Here, we report results from a standardized global field survey 
conducted in 92 sites located in 25 countries from six continents to 
assess the joint influence of climate, soil properties, grazing, and 
fire disturbance on woody dominance across global drylands 
(table S1 contains a detailed list of studied factors, rationale, and 
references). We also used this survey to test two hypotheses related 
to grazing not explored before for drylands at a global scale: (i) a 
lack of response to increasing grazing pressure on relative woody 
cover (RWC) as aridity increases, due to plant traits related to 
grazing and drought tolerance converging in arid systems (47, 48); 
and (ii) the effect of increasing grazing pressure on RWC varies 
with the dominant livestock species because of different foraging 
behaviors (e.g., grazers versus browsers) and changes in herbivore 
selectivity (36, 37, 43, 49).

RESULTS
Climate, soil properties, and grazing were the most important vari-
ables correlated with RWC across global drylands (Fig. 1). The best-
fitting model for RWC included the interactions between MAP and 
soil water holding capacity (WHC) and between grazing pressure 
and dominant livestock species (Fig. 2A). RWC increased with 
increasing MAP, but only in sites with soil WHC values below 27% 
(table S4). Increasing grazing pressure in sites with cattle or horses 
increased RWC (Figs. 2A and 3A), which also increased with pre-
cipitation seasonality (Fig. 2A and table S4).

The importance of RWC predictors changed when tree and shrub 
cover were analyzed separately. Variables linked to grazing and 
climate were important in relation to relative tree cover (Fig. 1), with 
MAP and seasonality positively related to it (Fig. 2B and table S4). 
We also found a nonlinear pattern related to temperature, with rela-
tive tree cover increasing with temperature before reaching an 
optimum of 15°C and decreasing after (Fig. 4B and table S4). The 
best-fitting model included a significant interaction between grazing 
pressure and dominant livestock species (Fig. 2B). In sites with cattle 

or horses, we found increases in relative tree cover with increasing 
grazing pressure (Fig. 3B). However, relative tree cover declined as 
goat grazing pressure increased (a 66% lower cover across all grazed 
versus ungrazed plots). Relative shrub cover was mainly explained 
by grazing pressure × livestock species (Fig. 3C) and MAP × soil 
WHC (Fig. 1) interactions. In areas grazed by sheep and goats, rela-
tive shrub cover decreased by 27% and increased by 60%, respec-
tively, at high grazing pressure plots compared to that in ungrazed 
ones. When precipitation was lower than 383 mm, relative shrub 
cover was higher at sites with higher soil WHC than at sites with 
lower soil WHC, while the opposite pattern was found when pre-
cipitation was higher than 383 mm (Fig. 4A and table S4). Sites that 
experienced fire in the last 20 years had on average 38% less relative 
shrub cover than sites without fire, but this effect was not statisti-
cally significant (P = 0.06). Inter-site variability was significant for 
relative woody, tree, and shrub cover (table S5).

Analogous to relative cover, MAP, grazing pressure, and live-
stock species were the most important variables correlated with 
absolute cover of woody species, trees, and shrubs (fig. S3). In 
addition, the importance of predictor variables shifted when ana-
lyzing tree and shrub cover separately. Specifically, interactions 
involving MAP with grazing pressure were important to explain 
tree cover (figs. S3 and S4). Contrary to relative cover, the MAP × 
soil WHC interaction had low importance values to explain the 
absolute covers of woody species. The best-fitting models accounted 
for a substantially smaller proportion of variation compared to 
models for relative cover (fig. S3).

DISCUSSION
MAP accounted for half of the explained variation in RWC across 
global drylands. The pattern of increased RWC with greater MAP 
was driven by tree cover, for which growth and survival is usually 
limited by water. This result is consistent with previous studies con-
ducted in savannas (4, 13, 17, 32). The seasonality of precipitation, 
which was positively associated with relative tree cover, was another 
climatic feature important to explain changes in RWC. Grasses may 
outcompete tree species for water in the upper soil layers (17), so a 
higher water availability and a higher frequency of large rainfall 
events may allow more water infiltration to deeper layers that may 
be used by deeper-rooted tree species (26, 28, 50–52). Higher mean 
annual temperature was correlated with an increase in relative shrub 

Fig. 1. Importance of predictors of relative woody, tree, and shrub cover across 
global drylands. Importance is based on the sum of Akaike weights of all models 
where each predictor is present using a multimodel inference approach. PCV, pre-
cipitation seasonality; PWQ, % precipitation in warmest quarter; MAT, mean annual 
temperature; WHC, soil water holding capacity; GRAZ, grazing pressure; LS, domi-
nant livestock species; HR, herbivore richness; and FIRE, fire occurrence during the 
2001–2019 period. Geographical variables (latitude and longitude) are not shown 
because they were included in all possible models for relative woody cover (RWC: 
tree + shrub), relative tree cover (RTC), and relative shrub cover (RSC).
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Fig. 2. Parameter estimates of the lowest AICc models (best-fitting models). The models predicted relative woody (tree + shrub) cover (A), relative tree cover (B), and 
relative shrub cover (C). Standardized regression coefficients and 95% confidence intervals are plotted for each explanatory variable. The right panels show relative effects 
of each group of variables estimated with a variation partitioning approach [semi-partial coefficient of determination (R2)]. *P < 0.05, **P < 0.01, and ***P < 0.001. Ab-
breviations as in Fig. 1.
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cover, suggesting that the increase in evaporative demand could dis-
advantage grasses more than shrubs, as grasses rely more on available 
water in the upper layers, reducing to a greater extent their rain-use 
efficiency (53). In contrast to shrubs, relative tree cover showed a bi-
modal response to temperature. It increased with temperature before 
reaching a threshold of 15°C, possibly due to the positive effects of 
temperature on tree species’ vital rates [higher seedling establish-
ment and lower frost-induced mortality; (4, 54)]. However, the rela-
tive tree cover decreased beyond this temperature threshold, as 
higher temperatures could have a negative effect on tree species due 
to increases in water stress and associated mortality (31). Climatic 
projections indicate widespread increases in temperature and atmo-
spheric aridity across drylands worldwide (11). Thus, our findings 
suggest that ongoing global warming could lead to an increase in 
shrub cover. In addition, while our results suggest a potential de-
crease in tree dominance across global drylands due to higher tem-
peratures in warmer sites combined with lower precipitation, the 
intensification of intra-annual precipitation variability and the rising 
levels of CO2 could counterbalance the predicted decreases in tree 
cover at warmer dry biomes (25, 28, 55). We acknowledge that tem-
poral inferences based on the space-for-time approach used must be 
done with caution. Nevertheless, this approach remains valid in the 
investigation of uncertain and time-sensitive ecological patterns and 
processes (56), and its reliability in evaluating temporal changes in 
drylands has been substantiated (57).

Our study shows the importance of grazing in determining global 
patterns of woody dominance and reveals that its effects are more 
complex than the general models previously proposed [e.g., increases 
in grazing pressure leading to woody encroachment; (24, 58)]. We 
found that the effects of grazing pressure were largely dependent not 
only on the livestock species as hypothesized but also on the vegeta-
tion type considered (i.e., trees or shrubs). The contrasting patterns 
in woody dominance observed depending on livestock species and 
feeding strategies (browsers or grazers) support the idea of a com-
plementary effect among mammalian herbivores (36). Animal 
species differ in dietary preferences and foraging behaviors (49, 59), 
which can directly affect the vital rates of certain plant species (e.g., 
via defoliation or trampling) or indirectly, by modifying interac-
tions among life forms (16, 60). In sites where cattle and horses 
are present, increases in grazing pressure were linked to higher 

Fig. 3. Effects of livestock species and grazing pressure on woody vegetation 
cover across global drylands. Relative cover of woody species (A), trees (B), and 
shrubs (C). U, ungrazed; L, low grazing pressure; M, medium grazing pressure; and 
H, high grazing pressure. Estimated marginal means and 95% confidence intervals 
are shown.

Fig. 4. Changes of relative shrub and tree cover with environmental variables across global drylands. Predicted responses of relative shrub cover in relation to MAP 
for three levels of soil WHC (A) and relative tree and shrub cover in relation to mean annual temperature (B). Panel (A) indicates the threshold of texture effect at MAP of 
383 mm. “.” indicates P < 0.1; ***P < 0.001. Estimated marginal means and 95% confidence intervals are shown.
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RWC. This outcome was expected, as cattle and horses prefer to con-
sume grasses over woody plants (49). However, this pattern was not 
observed in sites grazed and browsed by goats and sheep, as these 
animals can consume both woody and herbaceous species. At sites 
with goats, relative tree cover declined with increasing herbivore 
pressure, possibly due to a historic effect from browsing on tree sap-
lings, leading to a reduction in relative tree cover and an increase in 
relative shrub cover (61). Goats are typically mixed feeders but, 
in a browser-grazer gradient, can be considered the most promi-
nent “browser” among the four livestock species considered in this 
study (62). At sites with sheep, relative shrub cover declined with 
increasing grazing pressure, while relative woody and tree cover 
remained unaffected. This outcome may seem unexpected, as sheep 
are considered to be more selective grazers (62). However, grass spe-
cies replacement from palatable to less-preferred species can buffer 
reductions in grass cover (63, 64). In addition, some shrub species 
may be defoliated by sheep during dry years or when they consume 
flowers during the growing season. Yet, it is important to notice that 
the number of sites with goats or horses is lower than the number of 
sites with sheep or cattle in our dataset (table S2). This implies that 
the strength of our inferences for horses or goats may be lower than 
for sheep or cattle. We did not find evidence for the hypothesized 
interaction effect between precipitation and grazing pressure for 
RWC. However, this interaction was important to explain changes 
in tree cover, where the positive slopes along the precipitation gra-
dient were gentler as grazing pressure increased, and grazing exclu-
sion increased tree cover only at more mesic sites. This pattern of 
absolute cover may be a result of tree species traits related to grazing 
and drought tolerance converging in arid ecosystems as stated 
in our first hypothesis (47, 48). Another complementary ecologi-
cal mechanism is that lower grazing pressures only benefit tree 
establishment and growth when there is sufficient water content in 
deeper soil layers, something that occurs at sites with higher pre-
cipitation (17, 21).

The inverse texture hypothesis (65) postulates that finer soils 
with higher water-holding capacity promote productivity in areas 
with high precipitation, and coarser soils with lower water retention 
positively affect productivity in areas with low precipitation. This 
hypothesis has been demonstrated previously for grasslands and 
shrublands in North America (20, 66). Our results (Fig. 4) suggest 
that the inverse texture hypothesis also holds for the global scale. 
Our estimated point of no texture effect on the precipitation–shrub 
cover relationship was very similar to previous estimations [370 mm 
in (66) cf. 383 mm in our study], highlighting the robustness of this 
phenomenon. However, we detected this MAP × soil WHC interac-
tion only on shrubs and not on trees. As this interaction was not 
important to explain absolute shrub cover (fig. S3), the observed 
MAP × soil WHC interaction would be an outcome of changes in 
grass cover (20, 66). Overall, our results indicate that the interaction 
between MAP and soil WHC should be considered a key element of 
shrub:grass coexistence models for global drylands.

Fire is considered a crucial variable in understanding woody 
cover dominance worldwide (29, 33). While the effect of fire was 
included in the best fitting model for relative shrub cover, there 
was substantial variability in the response to fire among our study 
sites. This can be explained by the low statistical power available to 
test the fire effect because of the low occurrence of fire in our sam-
ple sites. The low importance of fire observed here may be an in-
trinsic feature of drylands, as some studies suggest that fire is more 

important in mesic than in xeric ecosystems (13, 40), as drylands 
tend to accumulate less fuel and have a lower patch connectivity 
than mesic areas (45). The lack of fire effects at our study sites 
may be also explained by the low fire frequency observed, pro-
viding enough time for trees to grow to adult fire-resistant size 
classes (22, 67, 68).

While we have identified several factors significantly associated 
with woody dominance in global drylands, a considerable amount 
of inter-site variability remains unexplained by our models. None-
theless, our results offer valuable insights into potential areas for 
future research efforts to better understand the variability in woody 
cover among sites. First, differences in taxonomic composition and 
traits among sites may imply varied and diverse response groups 
to the studied drivers (69). Second, inter-site variability could be 
related to differences in the evolutionary history and human use 
across biomes (70). Future studies could address whether the im-
portance of these drivers depends on biogeographical regions or 
classifications related to human land-use history. For example, the 
importance of the drivers may be different for communities that 
evolved with large herbivores or may depend on the time because 
livestock were introduced in different continents. Third, while the 
patterns and relationships between variables described in this study 
are global, different context-dependent mechanisms may come into 
play at the local scale. For instance, the responses of woody cover to 
drivers might be constrained if alternative stable states exist or may 
be influenced by the network of ecological interactions, among oth-
er possible mechanisms (16, 27, 71). In addition, different physiog-
nomies probably involve different rangeland practices even with the 
same livestock species. Therefore, we emphasize the importance of 
continued ecological studies on coexistence at multiple spatial scales.

Our results highlight the importance of both climate and grazing 
as joint determinants of woody species dominance across global dry-
lands. Notably, the significance and direction of these influencing 
factors were contingent on the woody functional group under ex-
amination. The impacts of grazing were not solely dictated by the 
intensity of grazing pressure but were also influenced by the domi-
nant livestock species. Our findings also underscore the pivotal role 
of grazing management decisions in shaping woody dominance in 
drylands. For instance, implementing a strategy that involves mixed 
grazing and browsing herds with diverse feeding behaviors, coupled 
with judicious herbivore pressures, could serve as a viable approach 
to mitigate woody encroachment, which our results suggest may in-
crease under ongoing global warming. However, this must be cor-
roborated by future studies specifically evaluating the effects of mixed 
herds on woody vegetation dominance. Last, our findings highlight 
the imperative need to consider the interactions among climate, soil 
properties, and grazing dynamics to gain a comprehensive under-
standing of how woody vegetation and the associated ecosystem 
functions and services respond to ongoing global change in drylands.

MATERIALS AND METHODS
Study sites
We used data gathered in 304 plots from 92 experimental sites, lo-
cated in 25 countries of six continents (fig. S1), which are a subset of 
the data used in (1). Site selection aimed to capture a large range of 
environmental heterogeneity (both abiotic and biotic) of global dry-
land rangelands (fig. S2 and table S2). The survey included a wide 
variety of vegetation (e.g., grasslands, steppes, open shrublands, and 
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savannas), climatic conditions, and soil types (see table S1 for the 
ranges of each climate, soil, and grazing explanatory variables used 
in our analyses). Additional details on study site selection and envi-
ronmental characteristics can be found in (1, 72).

Field data and grazing pressure gradients
Fieldwork was conducted between January 2016 and September 2019. 
At each study site, we implemented a hierarchical experimental de-
sign featuring a varying number of 45 m–by–45 m plots based on 
grazing pressure levels (1, 72). They were situated along a gradient of 
grazing pressure, encompassing high (n = 91), medium (n = 90), 
and low (n = 80) pressure levels, with some sites additionally incor-
porating a fourth level (ungrazed, n = 43). To establish the grazing 
gradients, we strategically positioned these plots at varying distanc-
es from artificial watering points, which were installed to provide 
a continuous water source for livestock (73). To ensure robust analy-
ses and minimize potential confounding variables, these plots were 
placed in areas representative of the local vegetation and soil types. 
Proximity to the watering points served as a proxy for the intensity 
of grazing pressure, with closer distances indicating greater pres-
sure. This methodology is widely acknowledged and applied for as-
sessing the ecological repercussions of grazing pressure in drylands 
worldwide (73, 74). We assumed that the domestic herbivores ana-
lyzed in this study did not differ substantially in their dependence 
on water. The chosen watering points were located at a minimum 
distance of 1 km from other watering points or landscape features, 
such as fences, which might influence the movement of mam-
malian herbivores. In 84 of the 92 sites, this methodology was con-
sistently used. In the remaining eight sites, local variations in grazing 
pressure gradients were ascertained by observing different paddocks 
featuring varying grazing intensities [see (1) for details]. It is impor-
tant to emphasize that while these grazing pressure gradients pri-
marily resulted from domestic livestock, wild herbivores were present 
in the surveyed plots. In addition to assessing grazing pressure, we 
documented the dominant livestock species, identified as the domes-
ticated species with the highest proportion of collected dung mass. 
We also quantified the richness of mammalian herbivores, which in-
cluded both domesticated and wild species present at each plot (1). 
Local grazing gradients at each site were confirmed and validated 
using dung counts, livestock tracks, and livestock density data when 
available [see (1) for details].

At each plot, we located four transects separated 10 m each. 
Along each transect, we placed 25 contiguous quadrats (size of 1.5 m 
by 1.5 m). In each quadrat (100 per plot), we visually assessed the 
ground cover for each perennial species [see (1) for details]. This 
dataset was used to estimate the relative cover of woody species in 
each plot (i.e., trees and shrubs). We refer to the sum of these groups 
divided by total plant cover as RWC, which was used as our proxy of 
woody dominance. These cover values of woody functional groups 
are relative to the cover of all plants, following Eq. 1

We analyzed data of RWC, relative tree cover, and relative shrub 
cover. These three variables are the most appropriate variables to 
study woody dominance and coexistence between life forms be-
cause they consider both woody and herbaceous plant cover in rela-
tion to each other, instead of the more traditionally used absolute 

woody cover (7). An important feature of RWC is that it is inverse to 
relative herbaceous plant cover (including both perennial and an-
nual species; see Eq. 1). As such, RWC helps explain changes in grass 
cover in terms of coexistence (7, 13) and can thus contribute to un-
derstanding the drivers of forage production (10, 75), which is the 
primary land use across global drylands (1). Our survey provides 
field data of both woody and herbaceous species that would, other-
wise, be difficult to obtain using remotely sensed information (76). 
In addition, even within the woody life forms, identifying trees from 
shrubs using remote sensing products at the global scale is still chal-
lenging (77).

Climate and soil data
We obtained standardized climatic data from WorldClim 2.0, a high-
resolution (30 arc sec or ~1 km at the equator) database based on 
comprehensive climate observations and topographical data for the 
1970–2000 period (78). We used four climate variables, which have 
been previously shown to relate to differences in woody cover 
(table S1): MAP [it is inversely correlated with aridity in our dataset; 
correlation coefficient (r) = −0.89, P < 0.0001], mean annual tem-
perature, precipitation at warmest quarter (% of annual precipita-
tion during the three warmer months of the year), and precipitation 
seasonality (coefficient of variation of intra-annual precipitation).

At each plot, we collected topsoil samples from bare ground areas 
devoid of perennial vegetation. We randomly placed five 50 cm–
by–50 cm quadrats in these areas and collected a composite sample 
from each quadrat, consisting of five 145-cm3 soil cores (depth of 
0 to 7.5 cm) that were bulked and homogenized in the field. After 
sieving the samples using a 2-mm mesh, samples were air dried for 
1 month and shipped to Rey Juan Carlos University in Móstoles 
(Spain) for analysis. We measured soil WHC, a variable driven by 
soil texture (it is inversely correlated with sand content; r = −0.85, 
P < 0.0001) that is a good proxy of soil hydrological function (19, 
66) and that has been found to be related to changes in woody cov-
er (table S1). We weighed 10 g of dry soil per sample and added it 
to a funnel with moist filter paper. We added 10 ml of deionized 
water to each sample and covered the funnels with PARAFILM 
to prevent evaporation. The samples were allowed to drain into a 
test tube for 24 hours before we weighed them to calculate their 
WHC (%).

Fire data
We obtained fire data from MODIS MCD64A1 burned-area product 
(https://lpdaac.usgs.gov/products/mcd64a1v006/), which provides 
monthly images of burned areas at a 500 m–by–500 m spatial re
solution. We used images from November 2000 to September 2019 
(the date of the last field survey). The start date was determined by 
data availability but encompassed the period during which fire may 
have affected the current vegetation on some of the experimental 
sites. We estimated the fire frequency for each plot with Google 
Earth Engine (79). Only 25 plots from 10 sites (of the 92 experi-
mental sites) experienced fire events during November 2000 to 
September 2019 (table S3). Each plot with fire experienced only one 
fire event during the 2000–2019 period, so it is probable that range-
lands with higher fire frequency have been underrepresented in 
this survey. Thus, we used a binary variable to indicate whether a 
fire event had occurred or not in a given plot (0 = no fire and 1 = 
fire occurred). Although the 500 m–by–500 m spatial resolution of 
the fire data may include fire events outside the exact plot location, 

Relative woody cover (RWC) =
Tree + shrub cover

Total plant cover
(

all species
) (1)
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this information may still be valuable in characterizing the local 
fire disturbance regime, which is important because plant commu-
nity responses may depend on the site’s eco-evolutionary history of 
fire (67).

Statistical analyses
We used a combination of generalized linear mixed models [GLMMs; 
(80)] and multimodel inference (81) to analyze the relations among 
the explanatory variables with RWC (trees and shrubs) and the rela-
tive cover of trees and shrubs separately. Our statistical models 
included fixed effects for climate (precipitation, temperature, pre-
cipitation at warmest quarter, and precipitation seasonality), soil 
(WHC), grazing (grazing pressure, dominant livestock species, and 
mammalian herbivore richness), fire (fire occurrence in the 2000–
2019 period), and latitude and longitude (to account for the spatial 
structure of the data). Longitude values were transformed with sine 
and cosine functions to address circularity. We also included three 
interactions: precipitation × WHC, precipitation × grazing, and 
grazing × livestock species. Random effects included random inter-
cepts for sites. We also included quadratic terms for grazing pressure, 
MAP, and mean annual temperature to detect potential nonlinear 
patterns. The terms and interactions included in our models were 
based on our objectives and hypotheses (see table S1 for details). We 
checked the absence of variance inflation issues related to multicol-
linearity in our global model by estimating the variance inflation 
factor for each variable (82, 83). To facilitate comparison with previous 
studies (4, 13, 32), we also repeated our analyses using absolute 
cover values.

The GLMM model used was fitted using the “lme” function of 
the nlme package (84). First, a dredging approach was used on the 
global model to adjust every possible model and order all models 
according to Corrected Akaike Information Criterion (AICc) with 
the “dredge” function of the MuMIn package (85). We then esti-
mated the importance of each variable as the sum of Akaike weights 
of all the models in which each variable was present. Akaike weight 
values are based on AICc differences between consecutive models, 
ordered from the best-fitting to the worst-fitting model. We cen-
tered and standardized all explanatory variables before analysis as 
they have different scales and variances (86). After the multimodel 
inference approach, we identified the best-fitting models for each 
response variable based on AICc to describe the relations between 
response and predictors. Variation partitioning analysis was carried 
out using the function and package “partR2” (87) to estimate the 
response variability that each predictor set (climate, soil, grazing, 
and fire) explained. To test for spatial dependence, we performed 
spatial autocorrelation tests on the residuals of each model estimat-
ing Moran’s I statistic with the function “moran.test” from the sp-
dep package in R (88, 89). Multiple tests were performed for each 
model, modifying the nearest neighbors’ parameter from 10 to 50, 
to analyze spatial autocorrelation at different spatial scales. The 
alternative hypothesis of the Moran’s I test was positive spatial 
autocorrelation (i.e., nearby values tend to be more similar than 
expected by chance). As we had high P values in the tests for each 
response variable (>0.9 in all cases), we assumed that there was no 
strong evidence of spatial dependence or spatial autocorrelation in 
the models after including latitude and longitude as fixed effects. A 
similar approach was already used in a previous study from the 
same global survey (1). All statistical analyses were conducted us-
ing R version 4.2.3 (90).

Supplementary Materials
This PDF file includes:
Figs. S1 to S4
Tables S1 to S5
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