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Abstract
1.	 Individual plant size often determines the vital rates of growth, survival and re-

production. However, size can be measured in several ways (e.g. height, biomass, 
leaf length). There is no consensus on the best size metric for modelling vital rates 
in plants.

2.	 Demographic datasets are expanding in geographic extent, leading to choices 
about how to represent size for the same species in multiple ecological contexts. 
If the choice of size variable varies among locations, inter-population comparative 
demography increases in complexity.

www.wileyonlinelibrary.com/journal/jec
https://orcid.org/0000-0001-7252-8419
https://orcid.org/0000-0002-0675-4933
https://orcid.org/0000-0001-7982-5993
https://orcid.org/0000-0002-1201-8713
https://orcid.org/0000-0001-7805-5683
https://orcid.org/0000-0002-5847-5098
https://orcid.org/0000-0003-3348-9757
https://orcid.org/0009-0002-3218-7749
https://orcid.org/0000-0003-1062-0839
https://orcid.org/0000-0002-3707-1684
https://orcid.org/0000-0001-5053-5693
https://orcid.org/0000-0002-5468-5426
https://orcid.org/0000-0001-7069-9572
https://orcid.org/0000-0003-0582-5960
https://orcid.org/0000-0003-1476-1567
https://orcid.org/0000-0001-8302-7492
https://orcid.org/0000-0003-3325-2995
https://orcid.org/0000-0003-2295-449X
https://orcid.org/0000-0001-7389-5528
https://orcid.org/0000-0001-8539-8967
https://orcid.org/0000-0001-5853-1136
https://orcid.org/0000-0002-2209-9553
https://orcid.org/0000-0003-3998-5540
https://orcid.org/0000-0003-4231-6006
https://orcid.org/0000-0001-8983-5482
https://orcid.org/0000-0003-3444-5262
https://orcid.org/0000-0002-9033-4260
https://orcid.org/0000-0003-2338-4564
https://orcid.org/0000-0002-8587-8271
https://orcid.org/0000-0001-7051-8903
https://orcid.org/0000-0003-2215-7298
https://orcid.org/0000-0002-0703-5850
https://orcid.org/0000-0001-8886-0328
https://orcid.org/0000-0002-6864-6380
https://orcid.org/0000-0002-1540-8768
https://orcid.org/0000-0001-9809-5092
https://orcid.org/0000-0002-2931-4543
https://orcid.org/0000-0001-6523-6848
https://orcid.org/0000-0002-4026-6220
https://orcid.org/0000-0002-4443-8261
https://orcid.org/0000-0003-4875-877X
https://orcid.org/0000-0002-5874-0138
https://orcid.org/0000-0003-4559-0609
https://orcid.org/0000-0002-5230-5987
https://orcid.org/0000-0001-7795-0352
https://orcid.org/0000-0003-0607-4230
https://orcid.org/0000-0002-3584-8031
https://orcid.org/0000-0002-5273-5370
https://orcid.org/0000-0001-7101-5726
https://orcid.org/0000-0001-9301-7909
https://orcid.org/0000-0001-7009-2527
https://orcid.org/0000-0003-3388-8950
https://orcid.org/0000-0002-1322-1393
https://orcid.org/0000-0001-9727-1672
https://orcid.org/0000-0002-3550-1070
https://orcid.org/0000-0002-6996-7223
https://orcid.org/0000-0003-2008-7062
https://orcid.org/0000-0002-4170-2143
https://orcid.org/0000-0001-8140-539X
https://orcid.org/0000-0003-0189-1899
https://orcid.org/0000-0003-4229-2497
mailto:
https://orcid.org/0000-0001-7599-3201
http://creativecommons.org/licenses/by/4.0/
mailto:buckleyy@tcd.ie
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1365-2745.70148&domain=pdf&date_stamp=2025-09-12


2  |    BAUDRAZ et al.

1  |  INTRODUC TION

The size of individuals is critical for modelling individual vital 
rates, such as fecundity, growth and survival, particularly in plants 
(Caswell,  2001; Easterling et  al.,  2000; Morris & Doak,  2002; 
Roff,  1986; Stearns,  1992). Larger, same-age individuals are often 
interpreted as having a higher performance (Stearns,  1992). 
Nonetheless, larger is not necessarily better, as size can also increase 
visibility to herbivores, susceptibility to disturbances and lead to ar-
chitectural instability (Díaz et al., 2007).

‘Size’ is not simple to measure, particularly in perennial plants 
that display considerable structural variation. Therefore, many size 
metrics are used for plant population modelling, such as stem di-
ameter in trees (Ellner & Rees, 2006; Meunier et al., 2007), number 
of leaves (Oldfather, 2018a, 2018b), as well as combinations of dif-
ferent variables (e.g. length of the longest leaf times the number of 
leaves in a rosette in Van Groenendael (1986) and Van Groenendael 
and Slim  (1988)). The appropriate size metric may vary depending 
on the focal study organism, which makes it difficult to determine 

the ‘optimal’ metric for capturing size as a determinant of individuals 
demographic fate.

The selection of an appropriate size variable is typically 
only briefly mentioned in publications (Ellner et  al.,  2016; 
Oldfather,  2018b). There is some advice about how to select the 
best state variable for demographic studies, which mostly focuses 
on comparing different candidate variables using the Akaike in-
formation criterion (AIC; Akaike,  1974; Caswell,  2001; Morris & 
Doak,  2002; but see also Younginger et  al.,  2017). AIC, however, 
is used to compare models using the same response variable. To 
compare the performance of multiple size metrics as explanatory 
variables for explaining variance in multiple vital rates as response 
variables (e.g. size at the next time point (continuous response), prob-
ability of flowering (binary response), probability of survival (binary 
response)), AIC is not appropriate and other approaches are needed 
(Akaike,  1974). Other metrics of goodness of fit should be imple-
mented, such as the root mean square error or mean absolute error 
(Willmott & Matsuura, 2005), but guidance is lacking. Furthermore, 
advice is mostly aimed at demographic studies including one or a 

3.	 Here, we present a framework to perform size metric selection in large-scale de-
mographic studies. We highlight potential pitfalls and suggest methods applicable 
to diverse study organisms.

4.	 We assessed the performance of five different size metrics for the perennial 
herb Plantago lanceolata, across 55 populations on three continents within its na-
tive and non-native ranges, using the spatially replicated demographic dataset 
PlantPopNet. We compared the performance of each candidate size metric for 
four vital rates (growth, survival, flowering probability and reproductive output) 
using generalized linear mixed models. We ranked the candidate size metrics 
based on their overall performance (highest generalized R2) and homogeneity 
of performance across populations (lowest total magnitude of, and variance in, 
population-level error).

5.	 While all size variables performed well for modelling vital rates, the number of 
leaves (modelled as a discrete variable, without transformation) was selected as 
the best size metric, followed by leaf length. We show how to interrogate poten-
tial trade-offs between overall explanatory power and homogeneity of predic-
tions across populations in any organism.

6.	 Synthesis. Size is an important determinant of vital rates. Using a dataset of un-
precedented spatial extent, we find (a) consistent size-based models of growth, 
survival and reproduction across native and non-native populations of this cos-
mopolitan plant species and (b) that several tested size metrics perform similarly 
well. This is encouraging for large-scale demographic studies and for comparative 
projects using different size metrics, as they may be robust to this methodological 
difference.
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and macroecology, population models, size variable selection, state variable selection
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few populations, generally spatially close and in similar environ-
ments (Coutts et  al.,  2016; Pironon et  al.,  2017; Salguero-Gómez 
et al., 2015).

There have been efforts in recent years to increase the 
geographical extent of demographic datasets. Demographic 
data are collected at larger spatial and environmental scales 
through harmonized protocols, such as PlantPopNet (gather-
ing information about Plantago lanceolata on three continents; 
Buckley et  al.,  2019; Smith et  al.,  2020; Villellas et  al.,  2021) 
and other spatially distributed demographic studies (such as 
Colautti et  al.,  2014 on Alliaria petiolata; Doak & Morris,  2010 
on Polygonum viviparum and Silene acaulis; Jongejans et al., 2011 
on Carduus nutans; Merow et al., 2017 on Berberis thunbergia and 
Alliaria petiolata and Sheth & Angert,  2018 on Erythranthe car-
dinalis). New challenges in analysing such data will undoubtedly 
emerge. In particular, different size variables might be good pre-
dictors of vital rates in different populations, as individuals in 
those populations may need to invest in different ‘aspects’ of size 
to face different biotic and abiotic conditions. For instance, the 
number of leaves per rosette in a rosette-forming plant might be 
more important in an alpine location to avoid damage by winter 
frost, while plant height may be of more importance in a mesic 
temperate meadow with strong competition for light (Falster & 
Westoby, 2003; Givnish, 1982; Halbritter et al., 2018). Size and 
its implications might also differ between the non-native and 
native range of a species due to different selective pressures 
(Paynter et al., 2016).

The existing size variable selection approaches do not, to 
our knowledge, account for between-population variation in the 
performance of size metrics. The overall performance of a model 
could be high, yet some vital rates may be much better explained 
in some populations than others. A lack of homogeneity in explain-
ing demographic processes across multiple populations may affect 
the accuracy of predictions of the demography of populations oc-
curring in new locations or under new climatic, land use or biotic 
contexts.

The homogeneity of performance of size metrics is of pressing 
importance as datasets grow in extent, to overcome the most com-
monly cited limitations in demographic studies, which are the limited 
geographical range of available data to answer questions (Coutts 
et al., 2016; Salguero-Gómez et al., 2012; Tredennick et al., 2018) 
and the lack of spatial replication (Csergő et  al.,  2017; Salguero-
Gómez et al., 2012, 2015). One example of a project aiming to fill 
these gaps in data availability is PlantPopNet, a spatially distrib-
uted model system for population ecology (www.​plant​popnet.​com) 
monitoring multiple populations of the perennial plant Plantago 
lanceolata across three continents, including both native and in-
troduced ranges (Buckley et  al.,  2019; Smith et  al.,  2020; Villellas 
et al., 2021). Populations are censused annually for growth, survival 
and fecundity of all individuals by a network of local collaborators 
using a standardized protocol (Buckley et  al.,  2019). Plantago lan-
ceolata is a cosmopolitan perennial plant (Sagar & Harper,  1964; 
Smith et al., 2020) and PlantPopNet includes populations across a 

wide range of environmental conditions, from six different biomes 
(Figure 1). Given the broad range of climates faced by the studied 
populations, the PlantPopNet data are a good example of the need 
for a state variable that performs consistently across geographic and 
climatic space, populations and vital rates.

Using the PlantPopNet data, we developed a framework to se-
lect the best state variable (from candidate variables using differ-
ent above-ground size metrics) across populations and vital rates as 
a critical first step in developing a spatially distributed population 
model. Our objective was to test whether different size metrics 
varied in explanatory power and performance across vital rates and 
across populations. While we use a case study of Plantago lanceolata, 
the core questions we raise and methods we suggest could be ap-
plied to other organisms. We discuss the application of these meth-
ods to other study organisms and systems.

2  |  MATERIAL S AND METHODS

2.1  |  Overview

We used the internationally distributed demographic dataset from 
PlantPopNet to compare the performance of different size metrics 
as predictors in demographic models of growth, survival and 
reproduction across 55 populations of Plantago lanceolata from the 
sub-Arctic to the sub-Tropics (Figure  1). Using generalized linear 
mixed-effects models of growth, survival, probability of flowering 
and reproductive output, we compared six candidate size metrics 
to explain these vital rates. We assessed the size variables by 
comparing the explanatory performance of the different size metric 
models across vital rates, populations and native versus non-native 
ranges. Models were compared using R2 and mean absolute error 
(MAE) per population.

2.2  |  The species

Plantago lanceolata L. is a short-lived, perennial, rosette-forming herb 
(Kuiper & Bos, 1992; Sagar & Harper, 1964). Each individual (genet) 
is composed of one to several rosettes (ramets), which are generally 
connected and in close proximity. Small flowers (4 mm diameter) are 
arranged in spikes which vary in length and are organized on a vari-
able number of flowering stems per rosette and per individual plant 
(Sagar & Harper, 1964). Each flower produces up to two seeds in a 
circumcissile capsule (Lauber et  al.,  2018). The plant is variable in 
size and shape, with leaves ranging from 2 to 45 cm in length (Sagar 
& Harper, 1964). Native to Eurasia, P. lanceolata is now present on all 
continents except for mainland Antarctica (CABI, 2019). As this spe-
cies is widespread, of relatively low impact as a non-native species, 
not intensively managed as a weed, perennial, easy to recognize in 
the field, and was already being studied in multiple fields of biology 
and ecology (Kuiper & Bos, 1992), it was selected as a study organ-
ism for PlantPopNet.
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4  |    BAUDRAZ et al.

2.3  |  Dataset

PlantPopNet (www.​plant​popnet.​com; Figure 1) collaborators collect 
demographic information on 65 naturally occurring populations of 
P. lanceolata across three continents. The present study included 
55 populations that had at least two consecutive yearly censuses 

(Supporting Informations S1 and S2). Each population consists of an 
initial 100 individuals marked in naturally occurring populations and 
re-visited yearly at the peak of the flowering season.

We considered one genet to be one individual. Rosettes (ramets) 
linked by the same rooting system were added to the size of the 
overall genet. New recruits within the original plots were recorded 

F I G U R E  1  The distribution of the 55 populations of Plantago lanceolata included in this study in geographical (a) and environmental (b) 
space. Panel (b) shows the biomes of the world where P. lanceolata occurs. The biomes are classified by their mean annual precipitation 
values and mean annual temperature (Whittaker, 1970). Due to high local precipitation, one population in Norway lies outside the definition 
of Whittaker's biomes. Plots were developed with the BiomePlot (Kunstler, 2014) and rworldmap packages (South, 2011).
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and followed in subsequent years. The number of rosettes, number 
of leaves per rosette, length of the longest leaf and width of the lon-
gest leaf for each rosette, flowering status (flowered, not flowered), 
reproductive output and survival or death of each individual were 
recorded at each annual census. We used the first transition (from 
start of the study at that site to 1 year after, that is, the first 2 years 
of census data) for each population. For further information on the 
PlantPopNet protocol, see Buckley et al. (2019).

Permits to perform fieldwork were required where necessary. 
Data were collected from site SC with authorization from the 
National Parks and Wildlife Service for work in the Burren National 
Park (no permit number), from sites SW729 and SW242 with autho-
rization from the Direction générale de l'environnement du Canton 
de Vaud (DGE) Section Biodiversité et Paysage in Switzerland (no 
permit number), from sites ACR, HAS, NRM and JSJ with authori-
zation from the University of California Natural Reserve System (no 
permit number), from site HU with authorization from the Hungarian 
University of Agriculture and Life Sciences, Georgikon Campus (no 
permit number), from site TY with authorization from Tyson Research 
Center, Washington University in St. Louis (no permit number), from 
site CDF with authorization from University College Cork (no per-
mit number), from site PC with authorization from the University of 
California, Davis Putah Creek Riparian Reserve (no permit number), 

from site BG with authorization from the Luster municipality (no 
permit number), from site IT with authorization from the University 
of Torino, Department of Agricultural, Forest, and Food Sciences 
(no permit number) and from site WIN with authorization from the 
Hampshire and Isle of Wight Wildlife Trust (no permit number).

2.4  |  Choice of candidate size metrics

Several size metrics have been used to characterize growth, sur-
vival and reproduction for P. lanceolata using a variety of differ-
ent approaches (Antonovics & Primack, 1982; Hamre et al., 2010; 
Van Groenendael, 1986; Van Groenendael & Slim, 1988), including 
on populations monitored by PlantPopNet (Villellas et al., 2021). 
Based on these sources and the availability of measurements via 
PlantPopNet, we estimated size using five candidate size metrics: 
number of leaves, estimated biomass, total leaf area, total leaf 
length and length of the longest leaf (Table 1). These five size met-
rics use the three basic measurements of number of leaves, length 
of longest leaf and width of longest leaf as individual measure-
ments or in arithmetic combinations. The computation of the met-
rics is detailed in Table 1 and in Supporting Information S1. The 
use of the length of the longest leaf was dictated by the sampling 

TA B L E  1  Candidate size metrics considered in this study.

Metric Calculated as Transformation Rationale

Number of leaves No. of leaves No transformation Intuitive measure, easy to compute and measure 
in the field. Treating number of leaves as a 
discrete count variable enables appropriate error 
distribution and link function to be used. Bounding 
at zero is retained

Number of leaves No. of leaves Loge transformation Intuitive measure, easy to compute and measure 
in the field. Treating number of leaves as a 
continuous variable through a log transformation 
enables the use of normal errors and a continuous 
scale

Total leaf area Length of longest leaf × width of 
longest leaf × no. of leaves

Loge transformation Strong link to light capture

Total leaf length Length of longest leaf × no. of 
leaves

Loge transformation Commonly used in literature, strong link to light 
capture and ease of measurement in the field

Leaf length Length of the longest leaf Loge transformation Quickest to measure in the field, low level of 
expected causal links to light capture

Regressed biomass exp (0.556

+1.924× log(no. leaves)

−0.213× log(no. leaves)2

+0.003× leaf length

+0.833× log(leaf width))

Loge transformation Integrated measure that estimates biomass 
using several non-destructive size measures. 
Requires destructive measurement to develop the 
parameterization which is time consuming

Note: The variables were selected based on their occurrence in the literature (Antonovics & Primack, 1982; Hamre et al., 2010; Van 
Groenendael, 1986; Van Groenendael & Slim, 1988; Villellas et al., 2021) and the availability of measurements via PlantPopNet. Number of leaves 
was modelled as a count variable and as a continuous variable in the growth model where size is both a response and explanatory variable. The 
transformed and untransformed number of leaves are treated as different size metrics in the rest of the analysis. The use of other untransformed 
size variables did not have a strong justification due to low conceptual impact (e.g. continuous versus discrete growth model), and some convergence 
issues for untransformed variables. The biomass equation was calibrated using an approach similar to Villellas et al. (2021; see Supporting 
Information S1).
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6  |    BAUDRAZ et al.

protocol, which may bias upwards some of these size metrics. The 
number of leaves was the only non-continuous candidate size vari-
able in our study. We used the untransformed number of leaves as 
a discrete measure of plant size. We also used a log transformation 
of the number of leaves to enable use of a continuous scale. This 
facilitated comparisons with other size metric models using con-
tinuous response variables and normal errors.

All other variables were also log transformed as it normalized the 
residuals of the models and reduced the skewness where applicable. 
All model diagnostic plots without log transformation are available 
in Supporting Informations S3 and S4.

2.5  |  Development of the vital rate models

We modelled the following vital rates: survival probability, individ-
ual growth (modelled as sizet+1 = f(sizet)), flowering probability and 
reproductive output. We built a series of generalized linear mixed 
models to explain the variation in each of these vital rates. Six mod-
els were built for each vital rate, each testing one size variable as a 
candidate fixed effect, for a total of 24 models. The models included 
random slopes and random intercepts at the population level, and 
a random intercept at the plot level, matching the study design (fol-
lowing the PlantPopNet protocol, all populations are monitored in 
plots with marked individuals (Buckley et al., 2019)). To ensure com-
parability between the model outputs, we used the same dataset 
for each model, that is, no missing values for any size metric.

The reproductive output was captured as the product of the 
length of the longest inflorescence and the number of flower-
ing stems, as a proxy for the number of seeds produced (Villellas 
et al., 2021). It was modelled as a function of size, using a Gaussian 
distribution with an identity link. Survival and flowering proba-
bility were both modelled as a function of size, using a binomial 
distribution with a logit link. Growth was modelled as sizet+1 = f(-
sizet), and the same size metric variable was used as the response 
and explanatory variables for each growth model. For the contin-
uous response variables, Gaussian errors were used. The number 
of leaves, used as a response count variable, was modelled using 
negative binomial errors, with a square root link function in the 
package GLMMTMB (Brooks et al., 2017). The use of the negative 
binomial family and square root link was data driven, as a Poisson 
model showed signs of overdispersion. All other models were fit-
ted using the lme4 package (Bates et al., 2015). The viridis colour-
blind friendly palette was used to produce all figures, using the 
Turbo option (Garnier et al., 2021). All analyses were performed in 
R version 4.4.1 (R Core Team, 2024) and the code used is provided 
in Supporting Information S5.

2.6  |  Best size variable selection

Our objective was to compare size metrics in their ability to 
produce models that (a) met all applicable statistical assumptions, 

(b) had consistent performance across vital rates and had both (c) 
high explanatory power across populations and (d) homogeneous 
performance across populations. Each point (b–d) was assessed as 
a separate criterion (see text hereafter). The candidate size metrics 
were ranked for each criterion. Metrics that did not meet the model 
assumptions (criterion a) were removed from the model ranking 
process. We applied equal weighting of the criteria, but note that 
weighting could easily be changed if justified by the objective of the 
study.

2.7  |  Evaluation metrics

We used two different model performance metrics to assess 
each criterion: Nakagawa's R2 adapted to generalized linear 
mixed models (Johnson,  2014; Nakagawa et  al.,  2017; Nakagawa 
& Schielzeth,  2013), and the mean absolute error (MAE) (Chai & 
Draxler, 2014; Willmott & Matsuura, 2005). We used R2 as an overall 
metric of model performance, and MAE to quantify the error of the 
model within each population. Nakagawa's R2 includes conditional 
and marginal R2. Marginal R2 (R2

m) can be understood as related to 
the variance explained by the fixed effects in the model, while the 
conditional R2 (R2

c) is related to the variance explained by the entire 
model including the random structure. The equations to derive R2 
for generalized linear mixed models differ depending on the error 
distribution and the link of the model (Nakagawa & Schielzeth, 2013). 
Therefore, we use R2

c to compare metrics in their ability to explain 
each vital rate, but normalize the R2

c values prior to averaging them 
across the different vital rates:

where r is the vital rate and u is the size metric.
MAE is the sum of the absolute values of the (standard-

ized) residuals from each population (a measure of the ‘total 
error’ of the model in this population) divided by the number 
of individuals in the population. We preferred MAE to the root 
mean square error (RMSE), another well-used metric of good-
ness of fit, as the RMSE is sensitive to the effect of outliers. 
Using the square of the error works well for normally distrib-
uted processes but would penalize any response variable with 
a distribution skewed to the right (Willmott & Matsuura, 2005). 
Finally, the division by the number of individuals will render 
MAE more robust to varying population size than other metrics 
such as the variance within the population, which will increase 
with population size.

The mean absolute error is computed as follows:

where er,u,p,i is the standardized residual of plant i from the model 
for vital rate r with the size variable u, with n observations within 

(1)Normalized R2
c r,u

=
R2
c r,u

−min
(
R2
c r

)

max (R2
c r
) −min

(
R2
c r

) ,

(2)MAEr,u,p =

∑n

1

�
�
�
er,u,p,i

�
�
�

n
,
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    |  7BAUDRAZ et al.

population p. The raw residuals of the model were computed as the 
difference between the observed and predicted values for each indi-
vidual i. As the response variables of the models for each vital rate r, 
as well as the growth models using each size variable u, are in different 
units, we standardized the raw residuals by subtracting the mean (�r,u) 
and dividing by the standard deviation (�r,u) of each model to compute 
the standardized residuals er,u,p,i.

2.8  |  Selection process

2.8.1  |  Criterion (a) Assumptions check

We verified that assumptions were met for each model. As general-
ized linear mixed models with non-Gaussian errors are hard to diag-
nose, we used the DHARMa package (Hartig, 2020; see Supporting 
Information S3). The DHARMa package helps with the diagnosis of 
overdispersion, zero inflation (or depletion) and model misspecifica-
tion in the case of non-Gaussian response metrics and can also be 
applied to Gaussian response metrics. We used DHARMa to assess 
the uniformity of DHARMa residuals (homoscedasticity and homo-
geneity), the normality of random intercepts and slopes and the 
occurrence of zero inflation or depletion. We also used the sjPlot 
package to display random effect normality (Lüdecke,  2020). We 
display examples of the results of the DHARMa model diagnostic 
procedure in Supporting Information S3 and the code in Supporting 
Information S5.

2.8.2  |  Criterion (b) Performance across vital rates

We used R2 (Nakagawa & Schielzeth, 2013) to assess the goodness 
of fit for each vital rate model (see Section 2.7 for more details). 
A model with greater R2 was ranked higher. We investigated both 
the R2

c and R2
m for our models but used only the R2

c for the final 
variable selection step, as it includes the role of random effects in 
capturing the variance in vital rates. Nakagawa's R2 was computed 
using the ‘performance’ R package for each model (Lüdecke, 2020). 
The equations used to derive the R2

c differ based on the family and 
link function of each model (Nakagawa & Schielzeth, 2013). The R2

c 
values were therefore normalized across each vital rate as detailed 
in Equation  (1) prior to computation of the final score. For each 
size variable u, the final score on criterion b was the average of the 
normalized R2

c r,u
 over all four rates r. We have three types of mod-

els involved in this study; binomial models with logit link (survival, 
flowering probability), negative binomial models with square root 
link (growth modelled as number of leaves) and Gaussian models 
with log transformed variables and identity link (reproductive ef-
fort, continuous growth models). For one of the growth models 
the number of leaves, untransformed, is modelled using a negative 
binomal error distribution, with a log link. As it is the only model 
with this error distribution and link, we excluded it from the com-
parison of R2 values and obtained the normalized R2

c u=number of leaves as 

the average over three rates (survival, fecundity and reproductive 
output).

2.8.3  |  Criterion (c) High explanatory power across 
populations

We determined how well the model performed within each 
population by computing the mean absolute error for each 
population MAEr,u,p (Willmott & Matsuura, 2005, see above). A low 
MAEr,u,p means that the model for vital rate r using the size variable 
u performs well for population p. We then summed MAE across all 
populations to reach the value for criterion (c) for metric u and vital 
rate r (see Supporting Information S1.1.4).

2.8.4  |  Criterion (d) Homogeneity of the within 
population performances

We compared candidate size variables for homogeneous model 
performance across populations by calculating criterion d as the 
variance in MAEr,u,p across all populations; dr,u = �

2
(
MAEr,u,p

)
. The 

rationale is that even if a metric has a low summed MAEr,u,p value, 
it does not mean the spread of performance between populations 
will be narrow.

2.9  |  Application of the criteria

The performance of each size metric against each criterion was 
measured in units of standardized R2

c, MAE or variance in MAE 
as applicable (criterion b—highest R2

c, criterion c—lowest popu-
lation MAE, d—lowest variance in population MAE). As the vari-
ous criteria were measured in different units, we normalized 
the scores for each criterion to a 0 to 1 scale. We then used (1 
− c) and (1 − d) to ensure common directionality from 0 (worst 
performing) to 1 (best performing) for each criterion. The nor-
malized scores for each criterion were averaged over all criteria 
to obtain the overall scores. The overall score therefore ranges 
from 0 (worst performing metric) to 1 (best performing metric).

2.10  |  Further explorations

In addition, we assessed whether the relationship between size and 
vital rates was constant across populations by plotting the random 
slopes and intercepts for all populations. To do so, we extracted the 
conditional modes from each model. Very distinct, or even opposite 
slopes, would indicate either an ecologically different relationship 
between size and any vital rate in different populations (or regions 
of the world).

Finally, we explored if environmental gradients could ex-
plain the observed changes in size to vital rates relationship. The 
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8  |    BAUDRAZ et al.

environmental gradients used were mean temperature and mean 
annual precipitation, sourced as bioclim layers at a 10-min resolution 
(Fick & Hijmans, 2017). To test for the effects of the environmental 
gradients, or interaction between size metrics and environmental 
gradients, we built a linear mixed effects model for population MAE 
as a function of the temperature and precipitation values, together 
with the range (native, non-native), the size metric (categorical) and 
the interaction between the size metrics and the two environmental 
gradients. The random structure allowed the intercept to vary for 
each vital rate and population of origin, and the slope of the relation-
ship between MAE and temperature or precipitation was allowed to 
vary between vital rates. More complex random structures, includ-
ing the size variables as a random intercept, produced convergence 
warnings or did not converge. Both temperature and precipitation 
were normalized and scaled to avoid convergence issues. This model 
was built using the lme4 R package (Bates et al., 2015).

3  |  RESULTS

3.1  |  (a) Model diagnostics

The assessment of all 24 models against their respective assump-
tions can be seen in Supporting Informations S3 and S5. All models 

were deemed to adequately conform to their respective assump-
tions and were used for further analysis.

3.2  |  (b) Performance across vital rates

All size metrics performed well across vital rates. For the bino-
mial models, the conditional R2

c ranged from 0.55 to 0.7 for sur-
vival and 0.6 to 0.73 for flowering probabilities (Figure 2). For the 
Gaussian models, the conditional R2

c ranged from 0.55 to 0.73 
for reproductive output and 0.54 to 0.68 for growth models. The 
negative binomial growth model had a conditional R2

c of 0.8. The 
number of leaves (untransformed) consistently emerged as the 
top ranked variable where it could be compared to the other size 
metrics (Figure 2; Table 2). The ranks of the other size metrics dif-
fered between rates; for example, total leaf area was ranked sec-
ond for probability of flowering in terms of R2

c, but ranked last for 
reproductive output. The size metrics, being the only fixed effect 
in our model, were responsible for the following R2

m portions of 
explained variance: R2

m = 0.21 to 0.35 for the Gaussian growth 
models (0.53 for the negative binomial model), R2

m = 0.06 to 0.21 
for the Gaussian reproductive output model, R2

m = 0.10 to 0.22 for 
survival and R2

m = 0.18 to 0.30 for the flowering binomial models 
(Figure 2).

F I G U R E  2  Performance of the candidate size metrics across vital rates (growth, reproductive output, survival and flowering probability 
on the x-axes), expressed in terms of (a) conditional and (b) marginal R2 (R2

c and R2
m respectively, on the y-axes). R2

m is a measure of the 
variance explained by the fixed effects in the model, R2

c of the variance explained by the fixed effect and the random effects taken together. 
The equations to compute R2

c differ slightly between Gaussian (growth, reproductive output) and binomial (survival, flowering probabilities) 
models. Absolute values are only comparable within these model types; yet the relative performance of each size variable remains 
comparable. Colours represent different size metrics. Overlapping points appear through the use of jitter on the x-axis. All size variables are 
log-transformed (loge), except for the number of leaves which is a count and therefore is used both as a discrete variable and as a continuous, 
log-transformed (loge) variable. The R2

c for the growth model using the discrete, untransformed number of leaves as a response variable (0.8) 
is not exactly comparable with the values of the other size metrics for the same vital rates, as the model uses a different error distribution.
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    |  9BAUDRAZ et al.

3.3  |  (c) Performance across populations

The performance of the size metrics across populations is illustrated 
in Figure 3. In general, size metrics performed similarly across popu-
lations for the same vital rate (Figure 3, mode of the distributions, 
Table 2), with the exception of the growth model (Figure 4a) where 
the mode of the MAE values using untransformed number of leaves 
was lower than other size metrics.

3.4  |  (d) Homogeneity of the within population 
performances

The variance in population error is displayed in Figure  3 (spread 
of the values). The growth model using the number of leaves (un-
transformed) had a longer tail towards high MAE values than other 
size metrics (Figure  3a), implying some populations were poorly 
explained.

Number of leaves (untransformed) also yielded the highest vari-
ance among populations for the growth model (0.12, against a mean 
value of 0.06 for all size variables; Table 2).

3.5  |  Performance along climatic gradients

The analysis of performance along environmental gradients showed 
little difference between candidate metrics and vital rates (Figure 4). 
However, there was a general and consistent positive effect of tem-
perature on population MAE. Vital rates models were therefore con-
sistently poorer at capturing demography as temperature increased. 
There was no effect of the precipitation gradient (Figure S1.2.1), nor 
of the native versus non-native ranges (Figure 4; Figure S1.2.1) on 
population MAE.

3.6  |  Homogeneity of predictions across 
populations

The relationships between size and vital rates were mostly homo-
geneous over all populations (Figure 5); larger plants tended to be 
larger at the time of the next census, and to be more likely to flower 
and more likely to survive, although the magnitude of the relation-
ship differed between populations. For survival, flowering probabil-
ity and reproductive output, the relationship with size was inverted 
in a few populations, with larger plants being more likely to die, less 
likely to flower and producing fewer seeds per flowering event.

3.7  |  Size variable selection

Ranking size metrics using our variable selection framework yielded 
different results for each criterion (Table  2). Overall, the number 
of leaves as a discrete variable was the best performing metric, TA
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10  |    BAUDRAZ et al.

followed by leaf length (Table 2). The number of leaves was the best 
metric for two of our three criteria; however, it performed poorly at 
criterion d, the between-population variance in MAE. That is prob-
ably driven by the right skew of the MAE distribution for the number 
of leaves (Figure 3a, fourth row). The metric that was most homo-
geneous between populations (high values for criterion d) was the 
Total Leaf Area, which performed worse than all other methods at 
explaining the vital rates (Figure 2).

4  |  DISCUSSION

We found that we can build informative vital rates models for mul-
tiple populations across the native and non-native ranges for the 
common herbaceous perennial Plantago lanceolata using simple 
size variables, derived from straightforward field measurements. 
In our final ranking, the number of leaves was the best performing 
metric across all criteria, when used as a discrete variable and not 
log transformed to force a count variable into a Gaussian distribu-
tion (Table  2). The percentage of explained variance in vital rates 
was high for all vital rates (R2

c; Nakagawa & Schielzeth, 2013). The 
relationships (slopes) between size and vital rates were consistent 
between size metrics (Figure  5), although a few populations had 
contrasting behaviour; in most cases, larger plants are more likely to 
both survive and flower, whereas in a few populations, smaller plants 
had a higher probability to survive, as well as to flower. The two best 

performing metrics (number of leaves and leaf length) are straight-
forward to measure in the field and do not require proxies or estima-
tion (which is the case for biomass (Villellas et al., 2021)). These size 
metrics are non-destructive, which is a distinct advantage over the 
destructive collection of whole specimens for the estimation of pa-
rameters for the biomass equation, which ranked fifth. Interestingly, 
they are also direct field measurements rather than combinations 
of multiple measurements. Our identification of a simple size metric 
that can be used with confidence across many different populations 
is of significance for collaborative projects such as PlantPopNet. 
Simplified protocols have the greatest practical longevity (Pocock 
et al., 2014) which is important for the collection of long time series 
data, as is done in the PlantPopNet, but also on an increasing number 
of other species (DeMarch et al., 2017; Sheth & Angert, 2018).

Ultimately, the choice of a size metric may vary depending on the 
focal research question and organism. In the case of P. lanceolata, 
our suggested best size metric (untransformed number of leaves as a 
discrete variable) was the best against two of our suggested criteria, 
but the worst against the third criterion. We advise other authors 
to address such patterns and their consequences in their own data, 
species and research questions. In the present case, while the num-
ber of leaves explains all vital rates well, and across all populations, 
some populations are explained much better than others (low homo-
geneity of the within population performances, criterion d). Figure 3 
shows that, in our case, this is mostly due to two aspects: a tail of 
high MAEs for the growth model, and a distribution of population 

F I G U R E  3  Performance of the different size metrics (y axis), illustrated by the density plot of the populations' mean absolute errors (MAE, 
x axis) from the models for (a) growth, (b) survival, (c) flowering probability and (d) reproductive output. Residuals were standardized for all 
models. Wider density plots imply a broader spread of performance across populations; a tail to the right means that a few populations are 
poorly explained using the corresponding size variable. Conversely, a tail to the left implies a few populations are very well explained.
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    |  11BAUDRAZ et al.

MAEs for flowering and survival probabilities starting at lower val-
ues than other size metrics. We are therefore confident in our choice 
of size metric for our study organism, as it will capture those last two 
rates better than any other size candidate. Nonetheless, in our case, 
caution is needed in interpreting the results of future studies, as, 
although the growth in most populations will be well explained (the 
mode of the MAE distribution is lower than for other candidate size 
metrics, Figure 3), the growth of a few populations might be poorly 
explained. One can also see in Figure 5 that our fixed effect mod-
els had very different slopes for the relationship between size and 

vital rates in certain populations. Therefore, while the explanatory 
power of our models is very good, the predictive ability of our model 
in new populations may be biased. For studies focusing on invasive 
species and how to manage them upon entering a new study or area 
(Jongejans et  al.,  2011; Merow et  al.,  2017), this may be of major 
importance.

Interestingly, all candidate size metrics capture a bimodality 
in explaining survival (Figure  3b). This was due to the observed 
survival rates being very high in some populations. Models there-
fore had no difficulty capturing the patterns as they just predicted 

F I G U R E  4  Homogeneity of the performance of the vital rates models along climatic gradients. In panels (a)–(d), each point is the mean 
absolute error remaining in the residuals of one population once the growth (a), survival (b), probability of flowering (c) and reproductive 
output (d) have been modelled as a function of size. The populations are presented in order of increasing temperature (x-axis), where 
temperature values were scaled (mean centred and divided by the standard deviation). The black line and greyed areas show the prediction 
and confidence interval of a mixed effect model where MAE is predicted as a function of temperature, precipitation, the part of the 
range (native, non-native) and the size metric as fixed effects and the vital rate and population of origin as random effects (see methods). 
The trends over the temperature gradients are displayed with all other variables set to their average. The same figure over the global 
precipitation gradient can be seen in Supporting Information S1.2.
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12  |    BAUDRAZ et al.

F I G U R E  5  Homogeneity of the relationship between the vital rates and different candidate size metrics in 55 populations of the 
perennial herb Plantago lanceolata monitored by PlantPopNet. Each grey line represents the relationship between the size metric and vital 
rate in a single population, where each row is a different size metric and each column is a different vital rate. This relationship is the best 
linear unbiased predictor (BLUP) from a mixed effects model of the vital rate as a function of size with a random slope and intercept for 
population. The panels are therefore in different units and can only be compared qualitatively. Solid colour-coded bold lines show the fixed 
effect of the model, with dotted lines for the 95% CIs. Grey dots in the background show original observations, on the link scale if applicable 
(logit scale for survival and flowering probability). Binary observations are plotted as their logit values, 3.66 and −3.66, respectively.
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    |  13BAUDRAZ et al.

survival for all plants, producing the low mode. However, there is 
greater difficulty explaining survival in populations where it is not 
extremely high, as variance is highest for probabilities around 0.5. 
This produced the high mode. As the pattern was similar using all 
candidate size metrics, it does not affect the results of the cur-
rent study. This showcases how our multi-dimensional assessment 
of differences between size metrics enables nuanced evaluation 
of size variables for their research question (much more so than 
a simple use of AIC values) and across different types of organ-
isms. Depending on the research question, we suggest considering 
weighting the selection criteria differently to emphasize certain 
properties expected from the size metric. For example, pheno-
typic or genetic differences between populations may be indic-
ative of important ecological or evolutionary processes (Paynter 
et al., 2016). In such cases, a lack of homogeneity in predictions 
between populations as evidenced through criterion d may be 
upweighted.

The number of leaves was not the best predictor in our study 
when modelled using a Gaussian distribution through a log trans-
formation (O'Hara & Kotze, 2010). This shows that the careful con-
sideration of the nature of a demographic variable or parameter (is 
it a count variable? Is it continuous? What distribution does it fol-
low?) remains extremely important (Bolker, 2019; Zuur et al., 2010, 
2013). The decision to use a discrete or continuous size variable 
as a state variable has important consequences for further demo-
graphic analyses. On the one hand, count variables will be addressed 
via statistical distributions truncated at 0. This will avoid the pre-
diction of individuals of negative sizes. In addition, when building 
size-structured population models, the choice of a continuous size 
variable lends itself to an integral projection model, whereas if a dis-
crete variable is used, a matrix projection model is the appropriate 
choice (Caswell, 2001; Easterling et al., 2000; Ellner et al., 2016). In 
this specific case and with our data, we would build a matrix model 
that uses the number of leaves as a size metric, where the size of 
adult individuals is modelled through a negative binomial distribu-
tion. The use of a count variable has a drawback, though: in our data-
set with only one transition and the possibility of dormancy of plants, 
zero leaf-sized adult individuals are confounded with dead individu-
als, which leaves our negative binomial zero depleted (Supporting 
Informations S3 and S5). This will strongly affect a negative binomial 
model (Bolker, 2019; Bolker et al., 2009). With more years of data 
added to the analysis, the dead individuals can be recognized from 
dormant individuals, which will diminish the impact of that issue. 
Another alternative would be to build an IPM with the leaf length 
as a size metric, which is our second-best candidate in the selection 
process (Table 2). Again, the importance of doing or not doing this 
might depend on the research question or the morphology of the 
focal species.

Although the purpose of this study was to select an appropri-
ate size metric prior to studying the effects of potential environ-
mental drivers of demographic processes (see for instance Römer 
et al., 2021), our results give some insights on the importance of en-
vironmental predictors to be added in future demographic models. 

There was little overall trend in MAE along precipitation gradients, 
but an increase in MAE with temperature (Figure  4). Temperature 
seems an important candidate in the investigation of large scale driv-
ers of demographic patterns (Kelly et al., 2021; Römer et al., 2021; 
Shea et al., 2005). We therefore advise the inclusion of relevant cli-
matic variables within large scale demographic models. This will shed 
light on the causes of large scale demographic variation (Buckley & 
Puy, 2022; Greiser et al., 2020), and probably increase model qual-
ity. The explanatory power of population of origin varies depending 
on the vital rate (R2

c vs. R2
m comparison, Figure  2). This probably 

indicates differences in the strengths of the mechanisms influencing 
vital rates and highlights the need for further exploration of driv-
ers of demographic processes at large scales (Ehrlén et  al.,  2016; 
Merow, Dahlgren, et al., 2014; Merow, Latimer, et al., 2014; Römer 
et al., 2021).

Much current comparative demographic work uses collated 
demographic models across multiple species (Kelly et  al.,  2021; 
Salguero-Gómez et al., 2015; Silvertown et al., 1993). If the choice 
of size variable were to be mainly locally influenced, differences 
between model outputs at the species level, developed on one or 
few local populations in different places, may require complex in-
terpretation as species-level and local differences are confounded. 
On the contrary, our results provide support for studies of collated 
works, as the comparison of populations modelled using different 
size metrics may be robust to this methodological difference, at least 
at the intraspecific level. This support for collated works, as well as 
our framework to select simple, non-destructive, homogeneously 
performing size metrics, helps to address the biggest limitations 
in existing demographic datasets, namely the small geographical 
range of datasets (Coutts et al., 2016; Salguero-Gómez et al., 2012; 
Tredennick et al., 2018) and their lack of spatial and temporal replica-
tion (Csergő et al., 2017; Salguero-Gómez et al., 2012, 2015).

5  |  CONCLUSIONS

Using a unique spatially extensive replicated dataset, we shed light 
on size-structured changes in demography across the range of a cos-
mopolitan plant species. We found that simple size metrics can per-
form very well in size-structured demographic studies, despite the 
wide geographic and climatic range included. We provided a method 
for, and a case study of, the implications of size variable selection 
in demographic studies including numerous populations. Careful 
consideration ought to be taken to the statistical properties of can-
didate variables. Our study offers support for works in the field of 
demography seeking generalization through compilation of models 
from different studies or populations.
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