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BAUDRAZ T AL.

. Here, we present a framework to perform size metric selection in large-scale de-

mographic studies. We highlight potential pitfalls and suggest methods applicable

to diverse study organisms.

. We assessed the performance of five different size metrics for the perennial

herb Plantago lanceolata, across 55 populations on three continents within its na-
tive and non-native ranges, using the spatially replicated demographic dataset
PlantPopNet. We compared the performance of each candidate size metric for
four vital rates (growth, survival, flowering probability and reproductive output)
using generalized linear mixed models. We ranked the candidate size metrics
based on their overall performance (highest generalized R?) and homogeneity
of performance across populations (lowest total magnitude of, and variance in,

population-level error).

. While all size variables performed well for modelling vital rates, the number of

leaves (modelled as a discrete variable, without transformation) was selected as
the best size metric, followed by leaf length. We show how to interrogate poten-
tial trade-offs between overall explanatory power and homogeneity of predic-

tions across populations in any organism.

. Synthesis. Size is an important determinant of vital rates. Using a dataset of un-

precedented spatial extent, we find (a) consistent size-based models of growth,
survival and reproduction across native and non-native populations of this cos-
mopolitan plant species and (b) that several tested size metrics perform similarly
well. This is encouraging for large-scale demographic studies and for comparative
projects using different size metrics, as they may be robust to this methodological

difference.

KEYWORDS

1 | INTRODUCTION

The size of individuals is critical for modelling individual vital
rates, such as fecundity, growth and survival, particularly in plants
(Caswell, 2001; Easterling et al., 2000; Morris & Doak, 2002;
Roff, 1986; Stearns, 1992). Larger, same-age individuals are often
interpreted as having a higher performance (Stearns, 1992).
Nonetheless, larger is not necessarily better, as size can also increase
visibility to herbivores, susceptibility to disturbances and lead to ar-
chitectural instability (Diaz et al., 2007).

‘Size’ is not simple to measure, particularly in perennial plants
that display considerable structural variation. Therefore, many size
metrics are used for plant population modelling, such as stem di-
ameter in trees (Ellner & Rees, 2006; Meunier et al., 2007), number
of leaves (Oldfather, 2018a, 2018b), as well as combinations of dif-
ferent variables (e.g. length of the longest leaf times the number of
leaves in a rosette in Van Groenendael (1986) and Van Groenendael
and Slim (1988)). The appropriate size metric may vary depending
on the focal study organism, which makes it difficult to determine

demography, landscape demography, large scale spatial demography, plant population ecology
and macroecology, population models, size variable selection, state variable selection

the ‘optimal’ metric for capturing size as a determinant of individuals
demographic fate.

The selection of an appropriate size variable is typically
only briefly mentioned in publications (Ellner et al, 2016;
Oldfather, 2018b). There is some advice about how to select the
best state variable for demographic studies, which mostly focuses
on comparing different candidate variables using the Akaike in-
formation criterion (AIC; Akaike, 1974; Caswell, 2001; Morris &
Doak, 2002; but see also Younginger et al., 2017). AIC, however,
is used to compare models using the same response variable. To
compare the performance of multiple size metrics as explanatory
variables for explaining variance in multiple vital rates as response
variables (e.g. size at the next time point (continuous response), prob-
ability of flowering (binary response), probability of survival (binary
response)), AIC is not appropriate and other approaches are needed
(Akaike, 1974). Other metrics of goodness of fit should be imple-
mented, such as the root mean square error or mean absolute error
(Willmott & Matsuura, 2005), but guidance is lacking. Furthermore,
advice is mostly aimed at demographic studies including one or a

858017 SUOWIWOD SAIERID 3|(dedl|dde auyy Ag peuienob a1e s9oiie O ‘8sn Jo Sa|nJ 10} Aiq1T 8UlUO A8]1A UO (SUONIPUCO-PUe-SWLB /W0 A3 1M ARIq 1 BU1|UO//Sty) SUONIpUOD pue swie | 84 88s *[6Z0z/0T/Sz] Uo AkeiqiTauliuo A|IMm ‘11 AISIBAIUN SBARY uosdwoy | Aq 8¥T0L'St22-G9ET/TTTT OT/I0p/W00" A8 1M ARIq 1 Ul |uO'S fuIno saa)//:sdny wouy pepeojumod ‘0 ‘Sy22S9eT



BAUDRAZ €T AL.

few populations, generally spatially close and in similar environ-
ments (Coutts et al., 2016; Pironon et al., 2017; Salguero-Gémez
et al., 2015).

There have been efforts in recent years to increase the
geographical extent of demographic datasets. Demographic
data are collected at larger spatial and environmental scales
through harmonized protocols, such as PlantPopNet (gather-
ing information about Plantago lanceolata on three continents;
Buckley et al., 2019; Smith et al., 2020; Villellas et al., 2021)
and other spatially distributed demographic studies (such as
Colautti et al., 2014 on Alliaria petiolata; Doak & Morris, 2010
on Polygonum viviparum and Silene acaulis; Jongejans et al., 2011
on Carduus nutans; Merow et al., 2017 on Berberis thunbergia and
Alliaria petiolata and Sheth & Angert, 2018 on Erythranthe car-
dinalis). New challenges in analysing such data will undoubtedly
emerge. In particular, different size variables might be good pre-
dictors of vital rates in different populations, as individuals in
those populations may need to invest in different ‘aspects’ of size
to face different biotic and abiotic conditions. For instance, the
number of leaves per rosette in a rosette-forming plant might be
more important in an alpine location to avoid damage by winter
frost, while plant height may be of more importance in a mesic
temperate meadow with strong competition for light (Falster &
Westoby, 2003; Givnish, 1982; Halbritter et al., 2018). Size and
its implications might also differ between the non-native and
native range of a species due to different selective pressures
(Paynter et al., 2016).

The existing size variable selection approaches do not, to
our knowledge, account for between-population variation in the
performance of size metrics. The overall performance of a model
could be high, yet some vital rates may be much better explained
in some populations than others. A lack of homogeneity in explain-
ing demographic processes across multiple populations may affect
the accuracy of predictions of the demography of populations oc-
curring in new locations or under new climatic, land use or biotic
contexts.

The homogeneity of performance of size metrics is of pressing
importance as datasets grow in extent, to overcome the most com-
monly cited limitations in demographic studies, which are the limited
geographical range of available data to answer questions (Coutts
et al., 2016; Salguero-Gémez et al., 2012; Tredennick et al., 2018)
and the lack of spatial replication (Csergé et al., 2017; Salguero-
Gomez et al., 2012, 2015). One example of a project aiming to fill
these gaps in data availability is PlantPopNet, a spatially distrib-
uted model system for population ecology (www.plantpopnet.com)
monitoring multiple populations of the perennial plant Plantago
lanceolata across three continents, including both native and in-
troduced ranges (Buckley et al., 2019; Smith et al., 2020; Villellas
et al., 2021). Populations are censused annually for growth, survival
and fecundity of all individuals by a network of local collaborators
using a standardized protocol (Buckley et al., 2019). Plantago lan-
ceolata is a cosmopolitan perennial plant (Sagar & Harper, 1964;
Smith et al., 2020) and PlantPopNet includes populations across a
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wide range of environmental conditions, from six different biomes
(Figure 1). Given the broad range of climates faced by the studied
populations, the PlantPopNet data are a good example of the need
for a state variable that performs consistently across geographic and
climatic space, populations and vital rates.

Using the PlantPopNet data, we developed a framework to se-
lect the best state variable (from candidate variables using differ-
ent above-ground size metrics) across populations and vital rates as
a critical first step in developing a spatially distributed population
model. Our objective was to test whether different size metrics
varied in explanatory power and performance across vital rates and
across populations. While we use a case study of Plantago lanceolata,
the core questions we raise and methods we suggest could be ap-
plied to other organisms. We discuss the application of these meth-

ods to other study organisms and systems.

2 | MATERIALS AND METHODS
2.1 | Overview

We used the internationally distributed demographic dataset from
PlantPopNet to compare the performance of different size metrics
as predictors in demographic models of growth, survival and
reproduction across 55 populations of Plantago lanceolata from the
sub-Arctic to the sub-Tropics (Figure 1). Using generalized linear
mixed-effects models of growth, survival, probability of flowering
and reproductive output, we compared six candidate size metrics
to explain these vital rates. We assessed the size variables by
comparing the explanatory performance of the different size metric
models across vital rates, populations and native versus non-native
ranges. Models were compared using R? and mean absolute error

(MAE) per population.

2.2 | The species

Plantago lanceolata L. is a short-lived, perennial, rosette-forming herb
(Kuiper & Bos, 1992; Sagar & Harper, 1964). Each individual (genet)
is composed of one to several rosettes (ramets), which are generally
connected and in close proximity. Small flowers (4 mm diameter) are
arranged in spikes which vary in length and are organized on a vari-
able number of flowering stems per rosette and per individual plant
(Sagar & Harper, 1964). Each flower produces up to two seeds in a
circumcissile capsule (Lauber et al., 2018). The plant is variable in
size and shape, with leaves ranging from 2 to 45cm in length (Sagar
& Harper, 1964). Native to Eurasia, P. lanceolata is now present on all
continents except for mainland Antarctica (CABI, 2019). As this spe-
cies is widespread, of relatively low impact as a non-native species,
not intensively managed as a weed, perennial, easy to recognize in
the field, and was already being studied in multiple fields of biology
and ecology (Kuiper & Bos, 1992), it was selected as a study organ-
ism for PlantPopNet.
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FIGURE 1 The distribution of the 55 populations of Plantago lanceolata included in this study in geographical (a) and environmental (b)
space. Panel (b) shows the biomes of the world where P. lanceolata occurs. The biomes are classified by their mean annual precipitation
values and mean annual temperature (Whittaker, 1970). Due to high local precipitation, one population in Norway lies outside the definition
of Whittaker's biomes. Plots were developed with the BiomePlot (Kunstler, 2014) and rworldmap packages (South, 2011).

2.3 | Dataset

PlantPopNet (www.plantpopnet.com; Figure 1) collaborators collect
demographic information on 65 naturally occurring populations of
P. lanceolata across three continents. The present study included
55 populations that had at least two consecutive yearly censuses

(Supporting Informations S1 and S2). Each population consists of an
initial 100 individuals marked in naturally occurring populations and
re-visited yearly at the peak of the flowering season.

We considered one genet to be one individual. Rosettes (ramets)
linked by the same rooting system were added to the size of the
overall genet. New recruits within the original plots were recorded
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and followed in subsequent years. The number of rosettes, number
of leaves per rosette, length of the longest leaf and width of the lon-
gest leaf for each rosette, flowering status (flowered, not flowered),
reproductive output and survival or death of each individual were
recorded at each annual census. We used the first transition (from
start of the study at that site to 1year after, that is, the first 2 years
of census data) for each population. For further information on the
PlantPopNet protocol, see Buckley et al. (2019).

Permits to perform fieldwork were required where necessary.
Data were collected from site SC with authorization from the
National Parks and Wildlife Service for work in the Burren National
Park (no permit number), from sites SW729 and SW242 with autho-
rization from the Direction générale de I'environnement du Canton
de Vaud (DGE) Section Biodiversité et Paysage in Switzerland (no
permit number), from sites ACR, HAS, NRM and JSJ with authori-
zation from the University of California Natural Reserve System (no
permit number), from site HU with authorization from the Hungarian
University of Agriculture and Life Sciences, Georgikon Campus (no
permit number), from site TY with authorization from Tyson Research
Center, Washington University in St. Louis (no permit number), from
site CDF with authorization from University College Cork (no per-
mit number), from site PC with authorization from the University of
California, Davis Putah Creek Riparian Reserve (no permit number),

TABLE 1 Candidate size metrics considered in this study.

Metric Calculated as

Number of leaves No. of leaves

Number of leaves No. of leaves

Total leaf area Length of longest leaf x width of

longest leaf x no. of leaves

Total leaf length Length of longest leaf x no. of

leaves

Leaf length Length of the longest leaf

exp (0.556
+1.924 xlog(no. leaves)

Regressed biomass

—0.213xlog(no. leaves)?
+0.003 x leaf length
+0.833 x log(leaf width))

Transformation

No transformation

Log, transformation

Log, transformation
Log, transformation
Log, transformation

Log, transformation

BRITISH ¢ 5
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from site BG with authorization from the Luster municipality (no
permit number), from site IT with authorization from the University
of Torino, Department of Agricultural, Forest, and Food Sciences
(no permit number) and from site WIN with authorization from the
Hampshire and Isle of Wight Wildlife Trust (no permit number).

2.4 | Choice of candidate size metrics

Several size metrics have been used to characterize growth, sur-
vival and reproduction for P. lanceolata using a variety of differ-
ent approaches (Antonovics & Primack, 1982; Hamre et al., 2010;
Van Groenendael, 1986; Van Groenendael & Slim, 1988), including
on populations monitored by PlantPopNet (Villellas et al., 2021).
Based on these sources and the availability of measurements via
PlantPopNet, we estimated size using five candidate size metrics:
number of leaves, estimated biomass, total leaf area, total leaf
length and length of the longest leaf (Table 1). These five size met-
rics use the three basic measurements of number of leaves, length
of longest leaf and width of longest leaf as individual measure-
ments or in arithmetic combinations. The computation of the met-
rics is detailed in Table 1 and in Supporting Information S1. The
use of the length of the longest leaf was dictated by the sampling

Rationale

Intuitive measure, easy to compute and measure
in the field. Treating number of leaves as a

discrete count variable enables appropriate error
distribution and link function to be used. Bounding
at zero is retained

Intuitive measure, easy to compute and measure
in the field. Treating number of leaves as a
continuous variable through a log transformation
enables the use of normal errors and a continuous
scale

Strong link to light capture

Commonly used in literature, strong link to light
capture and ease of measurement in the field

Quickest to measure in the field, low level of
expected causal links to light capture

Integrated measure that estimates biomass

using several non-destructive size measures.
Requires destructive measurement to develop the
parameterization which is time consuming

Note: The variables were selected based on their occurrence in the literature (Antonovics & Primack, 1982; Hamre et al., 2010; Van

Groenendael, 1986; Van Groenendael & Slim, 1988; Villellas et al., 2021) and the availability of measurements via PlantPopNet. Number of leaves
was modelled as a count variable and as a continuous variable in the growth model where size is both a response and explanatory variable. The
transformed and untransformed number of leaves are treated as different size metrics in the rest of the analysis. The use of other untransformed
size variables did not have a strong justification due to low conceptual impact (e.g. continuous versus discrete growth model), and some convergence
issues for untransformed variables. The biomass equation was calibrated using an approach similar to Villellas et al. (2021; see Supporting

Information S1).
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protocol, which may bias upwards some of these size metrics. The
number of leaves was the only non-continuous candidate size vari-
able in our study. We used the untransformed number of leaves as
a discrete measure of plant size. We also used a log transformation
of the number of leaves to enable use of a continuous scale. This
facilitated comparisons with other size metric models using con-
tinuous response variables and normal errors.

All other variables were also log transformed as it normalized the
residuals of the models and reduced the skewness where applicable.
All model diagnostic plots without log transformation are available
in Supporting Informations S3 and S4.

2.5 | Development of the vital rate models

We modelled the following vital rates: survival probability, individ-
ual growth (modelled as size,, =f(size,)), flowering probability and
reproductive output. We built a series of generalized linear mixed
models to explain the variation in each of these vital rates. Six mod-
els were built for each vital rate, each testing one size variable as a
candidate fixed effect, for a total of 24 models. The models included
random slopes and random intercepts at the population level, and
arandom intercept at the plot level, matching the study design (fol-
lowing the PlantPopNet protocol, all populations are monitored in
plots with marked individuals (Buckley et al., 2019)). To ensure com-
parability between the model outputs, we used the same dataset
for each model, that is, no missing values for any size metric.

The reproductive output was captured as the product of the
length of the longest inflorescence and the number of flower-
ing stems, as a proxy for the number of seeds produced (Villellas
et al., 2021). It was modelled as a function of size, using a Gaussian
distribution with an identity link. Survival and flowering proba-
bility were both modelled as a function of size, using a binomial
distribution with a logit link. Growth was modelled as size, , =f(-
size,), and the same size metric variable was used as the response
and explanatory variables for each growth model. For the contin-
uous response variables, Gaussian errors were used. The number
of leaves, used as a response count variable, was modelled using
negative binomial errors, with a square root link function in the
package GLMMTMB (Brooks et al., 2017). The use of the negative
binomial family and square root link was data driven, as a Poisson
model showed signs of overdispersion. All other models were fit-
ted using the Ime4 package (Bates et al., 2015). The viridis colour-
blind friendly palette was used to produce all figures, using the
Turbo option (Garnier et al., 2021). All analyses were performed in
R version 4.4.1 (R Core Team, 2024) and the code used is provided
in Supporting Information S5.

2.6 | Best size variable selection

Our objective was to compare size metrics in their ability to
produce models that (a) met all applicable statistical assumptions,

(b) had consistent performance across vital rates and had both (c)
high explanatory power across populations and (d) homogeneous
performance across populations. Each point (b-d) was assessed as
a separate criterion (see text hereafter). The candidate size metrics
were ranked for each criterion. Metrics that did not meet the model
assumptions (criterion a) were removed from the model ranking
process. We applied equal weighting of the criteria, but note that
weighting could easily be changed if justified by the objective of the
study.

2.7 | Evaluation metrics

We used two different model performance metrics to assess
each criterion: Nakagawa's R? adapted to generalized linear
mixed models (Johnson, 2014; Nakagawa et al., 2017; Nakagawa
& Schielzeth, 2013), and the mean absolute error (MAE) (Chai &
Draxler, 2014; Willmott & Matsuura, 2005). We used R? as an overall
metric of model performance, and MAE to quantify the error of the
model within each population. Nakagawa's R? includes conditional
and marginal RZ. Marginal R? (Rzm) can be understood as related to
the variance explained by the fixed effects in the model, while the
conditional R? (RZC) is related to the variance explained by the entire
model including the random structure. The equations to derive R?
for generalized linear mixed models differ depending on the error
distribution and the link of the model (Nakagawa & Schielzeth, 2013).
Therefore, we use R2C to compare metrics in their ability to explain
each vital rate, but normalize the ch values prior to averaging them
across the different vital rates:

RZ,, —min (R2))

cru

max (R2,) — min (R2,)’

. 2 _
Normalized RZ, , =

where r is the vital rate and u is the size metric.

MAE is the sum of the absolute values of the (standard-
ized) residuals from each population (a measure of the ‘total
error’ of the model in this population) divided by the number
of individuals in the population. We preferred MAE to the root
mean square error (RMSE), another well-used metric of good-
ness of fit, as the RMSE is sensitive to the effect of outliers.
Using the square of the error works well for normally distrib-
uted processes but would penalize any response variable with
a distribution skewed to the right (Willmott & Matsuura, 2005).
Finally, the division by the number of individuals will render
MAE more robust to varying population size than other metrics
such as the variance within the population, which will increase
with population size.

The mean absolute error is computed as follows:

2’11 er,u,p,i|
MAE,,, = ———, (2)
where e, ,,; is the standardized residual of plant i from the model

for vital rate r with the size variable u, with n observations within
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population p. The raw residuals of the model were computed as the
difference between the observed and predicted values for each indi-
vidual i. As the response variables of the models for each vital rate r,
as well as the growth models using each size variable u, are in different
units, we standardized the raw residuals by subtracting the mean (, )

and dividing by the standard deviation (s, ) of each model to compute

I

the standardized residualse,, .

2.8 | Selection process
2.8.1 | Criterion (a) Assumptions check

We verified that assumptions were met for each model. As general-
ized linear mixed models with non-Gaussian errors are hard to diag-
nose, we used the DHARMa package (Hartig, 2020; see Supporting
Information S3). The DHARMa package helps with the diagnosis of
overdispersion, zero inflation (or depletion) and model misspecifica-
tion in the case of non-Gaussian response metrics and can also be
applied to Gaussian response metrics. We used DHARMa to assess
the uniformity of DHARMa residuals (homoscedasticity and homo-
geneity), the normality of random intercepts and slopes and the
occurrence of zero inflation or depletion. We also used the sjPlot
package to display random effect normality (Lidecke, 2020). We
display examples of the results of the DHARMa model diagnostic
procedure in Supporting Information S3 and the code in Supporting

Information S5.

2.8.2 | Criterion (b) Performance across vital rates

We used R? (Nakagawa & Schielzeth, 2013) to assess the goodness
of fit for each vital rate model (see Section 2.7 for more details).
A model with greater R? was ranked higher. We investigated both
the R?_and R?_ for our models but used only the R?_ for the final
variable selection step, as it includes the role of random effects in
capturing the variance in vital rates. Nakagawa's R? was computed
using the ‘performance’ R package for each model (Liidecke, 2020).
The equations used to derive the R2C differ based on the family and
link function of each model (Nakagawa & Schielzeth, 2013). The R?
values were therefore normalized across each vital rate as detailed

C

in Equation (1) prior to computation of the final score. For each
size variable u, the final score on criterion b was the average of the

normalized R2, , over all four rates r. We have three types of mod-

cru
els involved in this study; binomial models with logit link (survival,
flowering probability), negative binomial models with square root
link (growth modelled as number of leaves) and Gaussian models
with log transformed variables and identity link (reproductive ef-
fort, continuous growth models). For one of the growth models
the number of leaves, untransformed, is modelled using a negative
binomal error distribution, with a log link. As it is the only model
with this error distribution and link, we excluded it from the com-

parison of R? values and obtained the normalized R2,_umber of leaves 35

BRITISH 7
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the average over three rates (survival, fecundity and reproductive

output).

2.8.3 | Criterion (c) High explanatory power across
populations

We determined how well the model performed within each
population by computing the mean absolute error for each
(Willmott & Matsuura, 2005, see above). A low
MAE, , , means that the model for vital rate r using the size variable

population MAE, , ,
u performs well for population p. We then summed MAE across all
populations to reach the value for criterion (c) for metric u and vital

rate r (see Supporting Information 51.1.4).

2.8.4 | Criterion (d) Homogeneity of the within
population performances

We compared candidate size variables for homogeneous model
performance across populations by calculating criterion d as the
rup) The

value,

variance in MAE, ,, across all populations; d,, = ¢2(MAE
rationale is that even if a metric has a low summed MAE, , ,
it does not mean the spread of performance between populations

will be narrow.

2.9 | Application of the criteria

The performance of each size metric against each criterion was
measured in units of standardized ch, MAE or variance in MAE
as applicable (criterion b—highest ch, criterion c—lowest popu-
lation MAE, d—lowest variance in population MAE). As the vari-
ous criteria were measured in different units, we normalized
the scores for each criterion to a O to 1 scale. We then used (1
- ¢)and (1 - d) to ensure common directionality from O (worst
performing) to 1 (best performing) for each criterion. The nor-
malized scores for each criterion were averaged over all criteria
to obtain the overall scores. The overall score therefore ranges

from O (worst performing metric) to 1 (best performing metric).

2.10 | Further explorations

In addition, we assessed whether the relationship between size and
vital rates was constant across populations by plotting the random
slopes and intercepts for all populations. To do so, we extracted the
conditional modes from each model. Very distinct, or even opposite
slopes, would indicate either an ecologically different relationship
between size and any vital rate in different populations (or regions
of the world).

Finally, we explored if environmental gradients could ex-

plain the observed changes in size to vital rates relationship. The

858017 SUOWIWOD SAIERID 3|(dedl|dde auyy Ag peuienob a1e s9oiie O ‘8sn Jo Sa|nJ 10} Aiq1T 8UlUO A8]1A UO (SUONIPUCO-PUe-SWLB /W0 A3 1M ARIq 1 BU1|UO//Sty) SUONIpUOD pue swie | 84 88s *[6Z0z/0T/Sz] Uo AkeiqiTauliuo A|IMm ‘11 AISIBAIUN SBARY uosdwoy | Aq 8¥T0L'St22-G9ET/TTTT OT/I0p/W00" A8 1M ARIq 1 Ul |uO'S fuIno saa)//:sdny wouy pepeojumod ‘0 ‘Sy22S9eT



BAUDRAZ T AL.

ﬂ_ Egglnﬁgmé] 1 of Ecol
s -OUInal ot LCology

environmental gradients used were mean temperature and mean
annual precipitation, sourced as bioclim layers at a 10-min resolution
(Fick & Hijmans, 2017). To test for the effects of the environmental
gradients, or interaction between size metrics and environmental
gradients, we built a linear mixed effects model for population MAE
as a function of the temperature and precipitation values, together
with the range (native, non-native), the size metric (categorical) and
the interaction between the size metrics and the two environmental
gradients. The random structure allowed the intercept to vary for
each vital rate and population of origin, and the slope of the relation-
ship between MAE and temperature or precipitation was allowed to
vary between vital rates. More complex random structures, includ-
ing the size variables as a random intercept, produced convergence
warnings or did not converge. Both temperature and precipitation
were normalized and scaled to avoid convergence issues. This model

was built using the Ime4 R package (Bates et al., 2015).

3 | RESULTS
3.1 | (a)Model diagnostics

The assessment of all 24 models against their respective assump-
tions can be seen in Supporting Informations S3 and S5. All models

were deemed to adequately conform to their respective assump-

tions and were used for further analysis.

3.2 | (b)Performance across vital rates

All size metrics performed well across vital rates. For the bino-
mial models, the conditional ch ranged from 0.55 to 0.7 for sur-
vival and 0.6 to 0.73 for flowering probabilities (Figure 2). For the
Gaussian models, the conditional R2C ranged from 0.55 to 0.73
for reproductive output and 0.54 to 0.68 for growth models. The
negative binomial growth model had a conditional ch of 0.8. The
number of leaves (untransformed) consistently emerged as the
top ranked variable where it could be compared to the other size
metrics (Figure 2; Table 2). The ranks of the other size metrics dif-
fered between rates; for example, total leaf area was ranked sec-
ond for probability of flowering in terms of RZC, but ranked last for
reproductive output. The size metrics, being the only fixed effect
in our model, were responsible for the following R2m portions of
explained variance: Rzm:0.21 to 0.35 for the Gaussian growth
models (0.53 for the negative binomial model), R2m=0‘06 to 0.21
for the Gaussian reproductive output model, R2m=0.10 to 0.22 for
survival and R2m=0.18 to 0.30 for the flowering binomial models
(Figure 2).

() (b)
1.00 1.00 Candidate size variable
@ Leaf length
@ Number of leaves
O O Number of leaves, untransformed
0.75 o o o 0.75 O Regressed biomass
® O (€] @ Total leaf area
6 .‘ q ® @ Total leaf Length
~ o ~ E o
z 0.50 o 0.50
Ce
) O
0.25 0.25 : ° o (;‘
L0 e
0.00 0.00
£ 23 2 £ 23z 2
o 3z o o 3 2 o
6 o 5 = (‘5 o =} 2
g 3 8 g 5 2
© ©
p=} =)
S °
o =}
a a
O Q
o 14

FIGURE 2 Performance of the candidate size metrics across vital rates (growth, reproductive output, survival and flowering probability
on the x-axes), expressed in terms of (a) conditional and (b) marginal R? (ch and R2m respectively, on the y-axes). R2m is a measure of the
variance explained by the fixed effects in the model, RZC of the variance explained by the fixed effect and the random effects taken together.
The equations to compute R2c differ slightly between Gaussian (growth, reproductive output) and binomial (survival, flowering probabilities)
models. Absolute values are only comparable within these model types; yet the relative performance of each size variable remains
comparable. Colours represent different size metrics. Overlapping points appear through the use of jitter on the x-axis. All size variables are
log-transformed (Ioge), except for the number of leaves which is a count and therefore is used both as a discrete variable and as a continuous,
log-transformed (log,) variable. The R2C for the growth model using the discrete, untransformed number of leaves as a response variable (0.8)
is not exactly comparable with the values of the other size metrics for the same vital rates, as the model uses a different error distribution.
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FIGURE 3 Performance of the different size metrics (y axis), illustrated by the density plot of the populations' mean absolute errors (MAE,
x axis) from the models for (a) growth, (b) survival, (c) flowering probability and (d) reproductive output. Residuals were standardized for all
models. Wider density plots imply a broader spread of performance across populations; a tail to the right means that a few populations are
poorly explained using the corresponding size variable. Conversely, a tail to the left implies a few populations are very well explained.

followed by leaf length (Table 2). The number of leaves was the best
metric for two of our three criteria; however, it performed poorly at
criterion d, the between-population variance in MAE. That is prob-
ably driven by the right skew of the MAE distribution for the number
of leaves (Figure 3a, fourth row). The metric that was most homo-
geneous between populations (high values for criterion d) was the
Total Leaf Area, which performed worse than all other methods at
explaining the vital rates (Figure 2).

4 | DISCUSSION

We found that we can build informative vital rates models for mul-
tiple populations across the native and non-native ranges for the
common herbaceous perennial Plantago lanceolata using simple
size variables, derived from straightforward field measurements.
In our final ranking, the number of leaves was the best performing
metric across all criteria, when used as a discrete variable and not
log transformed to force a count variable into a Gaussian distribu-
tion (Table 2). The percentage of explained variance in vital rates
was high for all vital rates (ch; Nakagawa & Schielzeth, 2013). The
relationships (slopes) between size and vital rates were consistent
between size metrics (Figure 5), although a few populations had
contrasting behaviour; in most cases, larger plants are more likely to
both survive and flower, whereas in a few populations, smaller plants
had a higher probability to survive, as well as to flower. The two best

performing metrics (number of leaves and leaf length) are straight-
forward to measure in the field and do not require proxies or estima-
tion (which is the case for biomass (Villellas et al., 2021)). These size
metrics are non-destructive, which is a distinct advantage over the
destructive collection of whole specimens for the estimation of pa-
rameters for the biomass equation, which ranked fifth. Interestingly,
they are also direct field measurements rather than combinations
of multiple measurements. Our identification of a simple size metric
that can be used with confidence across many different populations
is of significance for collaborative projects such as PlantPopNet.
Simplified protocols have the greatest practical longevity (Pocock
et al., 2014) which is important for the collection of long time series
data, asis done in the PlantPopNet, but also on an increasing number
of other species (DeMarch et al., 2017; Sheth & Angert, 2018).
Ultimately, the choice of a size metric may vary depending on the
focal research question and organism. In the case of P. lanceolata,
our suggested best size metric (untransformed number of leaves as a
discrete variable) was the best against two of our suggested criteria,
but the worst against the third criterion. We advise other authors
to address such patterns and their consequences in their own data,
species and research questions. In the present case, while the num-
ber of leaves explains all vital rates well, and across all populations,
some populations are explained much better than others (low homo-
geneity of the within population performances, criterion d). Figure 3
shows that, in our case, this is mostly due to two aspects: a tail of
high MAEs for the growth model, and a distribution of population
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FIGURE 4 Homogeneity of the performance of the vital rates models along climatic gradients. In panels (a)-(d), each point is the mean
absolute error remaining in the residuals of one population once the growth (a), survival (b), probability of flowering (c) and reproductive
output (d) have been modelled as a function of size. The populations are presented in order of increasing temperature (x-axis), where
temperature values were scaled (mean centred and divided by the standard deviation). The black line and greyed areas show the prediction
and confidence interval of a mixed effect model where MAE is predicted as a function of temperature, precipitation, the part of the

range (native, non-native) and the size metric as fixed effects and the vital rate and population of origin as random effects (see methods).
The trends over the temperature gradients are displayed with all other variables set to their average. The same figure over the global

precipitation gradient can be seen in Supporting Information S1.2.

MAEs for flowering and survival probabilities starting at lower val-
ues than other size metrics. We are therefore confident in our choice
of size metric for our study organism, as it will capture those last two
rates better than any other size candidate. Nonetheless, in our case,
caution is needed in interpreting the results of future studies, as,
although the growth in most populations will be well explained (the
mode of the MAE distribution is lower than for other candidate size
metrics, Figure 3), the growth of a few populations might be poorly
explained. One can also see in Figure 5 that our fixed effect mod-
els had very different slopes for the relationship between size and

vital rates in certain populations. Therefore, while the explanatory
power of our models is very good, the predictive ability of our model
in new populations may be biased. For studies focusing on invasive
species and how to manage them upon entering a new study or area
(Jongejans et al., 2011; Merow et al., 2017), this may be of major
importance.

Interestingly, all candidate size metrics capture a bimodality
in explaining survival (Figure 3b). This was due to the observed
survival rates being very high in some populations. Models there-
fore had no difficulty capturing the patterns as they just predicted
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FIGURE 5 Homogeneity of the relationship between the vital rates and different candidate size metrics in 55 populations of the
perennial herb Plantago lanceolata monitored by PlantPopNet. Each grey line represents the relationship between the size metric and vital
rate in a single population, where each row is a different size metric and each column is a different vital rate. This relationship is the best
linear unbiased predictor (BLUP) from a mixed effects model of the vital rate as a function of size with a random slope and intercept for
population. The panels are therefore in different units and can only be compared qualitatively. Solid colour-coded bold lines show the fixed
effect of the model, with dotted lines for the 95% Cls. Grey dots in the background show original observations, on the link scale if applicable
(logit scale for survival and flowering probability). Binary observations are plotted as their logit values, 3.66 and -3.66, respectively.
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survival for all plants, producing the low mode. However, there is
greater difficulty explaining survival in populations where it is not
extremely high, as variance is highest for probabilities around 0.5.
This produced the high mode. As the pattern was similar using all
candidate size metrics, it does not affect the results of the cur-
rent study. This showcases how our multi-dimensional assessment
of differences between size metrics enables nuanced evaluation
of size variables for their research question (much more so than
a simple use of AIC values) and across different types of organ-
isms. Depending on the research question, we suggest considering
weighting the selection criteria differently to emphasize certain
properties expected from the size metric. For example, pheno-
typic or genetic differences between populations may be indic-
ative of important ecological or evolutionary processes (Paynter
et al., 2016). In such cases, a lack of homogeneity in predictions
between populations as evidenced through criterion d may be
upweighted.

The number of leaves was not the best predictor in our study
when modelled using a Gaussian distribution through a log trans-
formation (O'Hara & Kotze, 2010). This shows that the careful con-
sideration of the nature of a demographic variable or parameter (is
it a count variable? Is it continuous? What distribution does it fol-
low?) remains extremely important (Bolker, 2019; Zuur et al., 2010,
2013). The decision to use a discrete or continuous size variable
as a state variable has important consequences for further demo-
graphic analyses. On the one hand, count variables will be addressed
via statistical distributions truncated at 0. This will avoid the pre-
diction of individuals of negative sizes. In addition, when building
size-structured population models, the choice of a continuous size
variable lends itself to an integral projection model, whereas if a dis-
crete variable is used, a matrix projection model is the appropriate
choice (Caswell, 2001; Easterling et al., 2000; Ellner et al., 2016). In
this specific case and with our data, we would build a matrix model
that uses the number of leaves as a size metric, where the size of
adult individuals is modelled through a negative binomial distribu-
tion. The use of a count variable has a drawback, though: in our data-
set with only one transition and the possibility of dormancy of plants,
zero leaf-sized adult individuals are confounded with dead individu-
als, which leaves our negative binomial zero depleted (Supporting
Informations S3 and S5). This will strongly affect a negative binomial
model (Bolker, 2019; Bolker et al., 2009). With more years of data
added to the analysis, the dead individuals can be recognized from
dormant individuals, which will diminish the impact of that issue.
Another alternative would be to build an IPM with the leaf length
as a size metric, which is our second-best candidate in the selection
process (Table 2). Again, the importance of doing or not doing this
might depend on the research question or the morphology of the
focal species.

Although the purpose of this study was to select an appropri-
ate size metric prior to studying the effects of potential environ-
mental drivers of demographic processes (see for instance Rémer
et al., 2021), our results give some insights on the importance of en-
vironmental predictors to be added in future demographic models.
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There was little overall trend in MAE along precipitation gradients,
but an increase in MAE with temperature (Figure 4). Temperature
seems an important candidate in the investigation of large scale driv-
ers of demographic patterns (Kelly et al., 2021; Rémer et al., 2021;
Shea et al., 2005). We therefore advise the inclusion of relevant cli-
matic variables within large scale demographic models. This will shed
light on the causes of large scale demographic variation (Buckley &
Puy, 2022; Greiser et al., 2020), and probably increase model qual-
ity. The explanatory power of population of origin varies depending
on the vital rate (R2C VS. R2m comparison, Figure 2). This probably
indicates differences in the strengths of the mechanisms influencing
vital rates and highlights the need for further exploration of driv-
ers of demographic processes at large scales (Ehrlén et al., 2016;
Merow, Dabhlgren, et al., 2014; Merow, Latimer, et al., 2014; Rémer
et al, 2021).

Much current comparative demographic work uses collated
demographic models across multiple species (Kelly et al., 2021;
Salguero-Gomez et al., 2015; Silvertown et al., 1993). If the choice
of size variable were to be mainly locally influenced, differences
between model outputs at the species level, developed on one or
few local populations in different places, may require complex in-
terpretation as species-level and local differences are confounded.
On the contrary, our results provide support for studies of collated
works, as the comparison of populations modelled using different
size metrics may be robust to this methodological difference, at least
at the intraspecific level. This support for collated works, as well as
our framework to select simple, non-destructive, homogeneously
performing size metrics, helps to address the biggest limitations
in existing demographic datasets, namely the small geographical
range of datasets (Coutts et al., 2016; Salguero-Gémez et al., 2012;
Tredennick et al., 2018) and their lack of spatial and temporal replica-
tion (Csergé et al., 2017; Salguero-Gomez et al., 2012, 2015).

5 | CONCLUSIONS

Using a unique spatially extensive replicated dataset, we shed light
on size-structured changes in demography across the range of a cos-
mopolitan plant species. We found that simple size metrics can per-
form very well in size-structured demographic studies, despite the
wide geographic and climatic range included. We provided a method
for, and a case study of, the implications of size variable selection
in demographic studies including numerous populations. Careful
consideration ought to be taken to the statistical properties of can-
didate variables. Our study offers support for works in the field of
demography seeking generalization through compilation of models
from different studies or populations.
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