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Abstract
Aim: Organisms on our planet form spatially congruent and functionally distinct com-
munities, which at large geographical scales are called “biomes”. Understanding their 
pattern and function is vital for sustainable use and protection of biodiversity. Current 
global terrestrial biome classifications are based primarily on climate characteristics 
and functional aspects of plant community assembly. These and other existing biome 
schemes do not take account of soil organisms, including highly diverse and function-
ally important microbial groups. We aimed to define large-scale structure in the diver-
sity of soil microbes (soil microbiomes), pinpoint the environmental drivers shaping it 
and identify resemblance and mismatch with existing terrestrial biome schemes.
Location: Global.
Time period: Current.
Major taxa studied: Soil eukaryotes and prokaryotes.
Methods: We collected soil samples from natural environments world-wide, incor-
porating most known terrestrial biomes. We used high-throughput sequencing to 
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1  |  INTRODUC TION

Biomes are large-scale biotic communities derived from criteria 
relevant to their structure and functioning. Current approaches to 
classification of aboveground terrestrial biomes use macroclimatic 
drivers, on the assumption that these underpin the major physiog-
nomic appearance (well-defined vegetation formations and asso-
ciated animal communities) and structure (spatial arrangement of 
biotic elements) of biomes and, as a consequence, their functioning, 
such as responses to environmental stresses and disturbances and 
to water and nutrient dynamics (Mucina, 2019; Olson et al., 2001). 
As such, biomes provide a broad description of how life on Earth 
is structured. Biomes are popular in teaching of ecology and envi-
ronmental sciences, provide large-scale context to ecological and 
biogeographical studies (e.g., Bastida et al., 2020) and are tools for 
large-scale conservation planning (Brooks et al., 2006), generalizing 
human impacts upon landscapes (Jacobson et  al.,  2019) and fore-
casting the impact of global change (Boit et al., 2016). The functional 
aspect of biomes provides a mechanistic basis for explanatory and 
predictive modelling and for development of the link between bio-
geography and ecosystem functionality, including provision of eco-
system services and land use (Delgado-Baquerizo, Reich, Trivedi, 
et al., 2020; Moncrieff et al., 2016).

It is widely acknowledged that soil microbes represent a substan-
tial fraction of global biodiversity and are fundamental to vegetation 
and ecosystem structure and functioning (e.g., Guerra et al., 2020; 
Xu et al., 2020). Yet, microbial communities have been almost en-
tirely neglected in attempts to define or validate terrestrial biomes. 
Smith et  al.  (2018), who validated “ecoregions” (geographically 

distinct subunits within biomes) using plant, fungal and animal data-
base records, found that the distributions of fungi did not adhere to 
ecoregion boundaries. There is also evidence that certain microbial 
groups are relatively more sensitive to ecological gradients than to 
biogeographical constraints, in comparison with macro-organisms 
(Tipton et al., 2019), and respond to different environmental drivers 
(including strong effects of certain edaphic properties) from those 
defining vegetation patterns (Shen et al., 2014). It therefore seems 
likely that consideration of microbial diversity will fundamentally 
change the way we view the large-scale structure of life on Earth.

Although compiling the distributions of regionally restricted 
macro-organisms poses an almost insurmountable logistic chal-
lenge, metabarcoding techniques coupled with expert definition 
of functional types provides a more viable approach for character-
izing ecologically meaningful units within soil microbial diversity. 
Consequently, there appears to be a strong argument for deriving 
soil microbial biomes (hereafter, soil microbiomes) directly from mi-
crobial datasets, rather than using terrestrial biomes as a surrogate 
or stratification tool.

Here, we present a dataset comprising soil samples from all con-
tinents except Antarctica. Predominantly microbial soil biota were 
described by sequencing eukaryotic and prokaryotic DNA, and major 
guilds and taxonomic divisions were distinguished among fungi, pro-
karyotes, plants and animals. We generated global soil microbiome 
classifications based on these empirical data and aimed to determine 
the extent to which current terrestrial biomes reflect variation in dif-
ferent soil organism groups; and how soil microbiome structure, and 
mismatch with terrestrial biomes, are shaped by edaphic properties 
alongside climate.

characterize soil biotic communities and k-means clustering to define soil microbi-
omes describing the diversity of microbial eukaryotic and prokaryotic groups. We 
used climatic data and soil variables measured in the field to identify the environmen-
tal variables shaping soil microbiome structure.
Results: We recorded strong correlations among fungal, bacterial, archaeal, plant 
and animal communities, defined a system of global soil microbiomes (producing 
seven biome types for microbial eukaryotes and six biome types for prokaryotes) and 
showed that these are typically structured by pH alongside temperature. None of 
the soil microbiomes are directly paralleled by any current terrestrial biome scheme, 
with mismatch most substantial for prokaryotes and for microbial eukaryotes in cold 
climates; nor do they consistently distinguish grassland and forest ecosystems.
Main conclusions: Existing terrestrial biome classifications represent a limited sur-
rogate for the large-scale diversity patterns of microbial soil organisms. We show that 
empirically defined soil microbiomes are attainable using metabarcoding and statisti-
cal clustering approaches and suggest that they can have wide application in theoreti-
cal and applied biodiversity research.
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biodiversity, biogeography, metabarcoding, pH, soil biota
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2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

Three hundred and forty-five soil samples from previously de-
scribed sampling locations world-wide (Davison et al., 2021) were 
used in this study (Supporting Information Dataset S1). Sampling 
locations generally experienced little disturbance from human 
activities, and sampling followed the approach described by 
Tedersoo et al. (2014): c. 300 g of topsoil was collected from ≤40 
points within a sampling area of c. 50 m × 50 m and pooled. Soil 
samples were dried within 24 h using silica gel or at room tempera-
ture, then carefully homogenized. Subsamples (2  g) of soil were 
extracted for molecular analysis; the remainder was stored for soil 
chemical analysis.

2.2  |  Environmental variables

Soil samples were sieved using a 2 mm mesh before analysis of soil 
chemical properties: pH, total N, organic C, P, Mg and K. Soil pH 
was measured in 1 M KCl solution following ISO 10390:2005 (Seven 
Easy pH meter with InLab Expert Pro electrode; Mettler Toledo, 
Malaysia). Total N content was determined using the Kjeldahl 
method (DK-20 digestion block and UDK-126 distillation unit; Velp 
Scientifica, Italy). Organic carbon content was determined using 
Tjurin's method (oxidation provided by boiling in H2SO4/K2Cr2O7 
solution) and subsequent spectrophotometry (Specol-11; Carl Zeiss, 
Germany). The Mehlich III extraction method was used to determine 
P, K, Mg and Ca content (MP-4200 microwave plasma atomic emis-
sion spectrometer; Agilent, USA). Soil chemical analyses were per-
formed at the Institute of Agricultural and Environmental Sciences, 
Estonian University of Life Sciences, Tartu, Estonia. Estimates of 
mean annual temperature (MAT), mean annual precipitation (MAP) 
and precipitation seasonality (SeaPrec) at sample locations were 
taken from the CHELSA database (Karger et al., 2017). A small num-
ber of missing values (two pH, four P, 10 K and 10 Ca) were assigned 
the mean value across the dataset in order to retain all data points in 
analyses (Supporting Information Dataset S1). The historical stability 
of terrestrial biomes at sampling locations was estimated by compar-
ing Olson's current biome classification (Olson et al., 2001) with an 
analogous classification for the Last Glacial Maximum (c. 21 kyr bp; 
Ray & Adams, 2001). Where the biome remained the same at both 
time points, samples were classified as stable; where the biome clas-
sification was different, samples were classified as unstable.

2.3  |  Molecular methods

DNA was extracted from 2  g of dried soil using the PowerMax 
Soil DNA Isolation Kit. The internal transcribed spacer (ITS) region 
was used for identification of soil microbial eukaryotes; the 16S 
rRNA gene was used for identification of soil prokaryotes. Certain 

macro-organism groups were also identified: plants were also identi-
fied using ITS, whereas soil animals were identified using the 18S 
rRNA gene. Given that the sampling was designed to target micro-
organisms in topsoil, the plant and animal data were expected to be 
less complete and provide only partial information.

2.3.1  |  Eukaryotes

The ITS region was amplified using primers ITS9mun 
(5′-TGTACACACCGCCCGTCG-3′) and ITS4ngsUni 
(5′-CCTSCSCTTANTDATATGC-3′) for identification of eukary-
otes in general, and the 18S rRNA gene was amplified with primer 
pair Euk575F (5′-ASCYGYGGTAAYWCCAGC-3′) and Euk895R 
(5′-TCHNHGNATTTCACCNCT-3′) for identification of non-fungal 
eukaryotes, specifically soil animals. The primer pair ITS9mun and 
ITS4ngsUni has been proposed for analysis of eukaryotes with ap-
proximately species-level resolution (Tedersoo & Anslan,  2019; 
Tedersoo & Lindahl, 2016). These primers amplify 170 bp of the 18S 
rRNA gene and the full-length ITS region, which serves as an official 
barcode for fungi (Nilsson et al., 2018; Schoch et al., 2012) and per-
forms well on many other groups, including plants (Coleman, 2009; 
Pawlowski et al., 2012). All primers were equipped with unique 12-
base Golay barcodes for multiplexing.

For amplification, the polymerase chain reaction (PCR) was per-
formed in two replicates for each sample, comprising 5 μl of 5× HOT 
FIREPol Blend Master Mix (Solis Biodyne, Tartu, Estonia), 0.5 μl of 
each forward and reverse primer (20 mM), 1 μl of DNA extract and 
18 μl ddH2O. Thermal cycling included an initial hot-start denatur-
ation at 95°C for 15 min; 30 cycles of denaturation for 30 s at 95°C, 
annealing for 30 s at 57°C and elongation for 1 min at 72°C; and final 
elongation at 72°C for 10 min and storage at 4°C. The duplicate PCR 
products were pooled and checked for the presence of amplification 
product on 1% agarose gel. In the case of no bands or weakly visible 
bands, samples were reamplified with higher numbers of PCR cycles 
(maximum of 35 cycles). Negative and positive controls were used 
throughout the process.

The PCR products were purified using a FavorPrepTM GEL/PCR 
Purification Kit (Favorgen Biotech Corporation). The ITS eukaryote 
libraries were sequenced on a PacBio Sequel instrument using SMRT 
cell 1 M, v.2 LR; Sequel Polymerase v.2.1 and Sequencing chemistry 
v.2.1. Loading was performed by diffusion; one SMRT cell was used 
for sequencing, with a movie time of 600 min and a pre-extension 
time of 45 min. The use of PacBio technology to sequence a large 
fragment of this marker region represents an important advance 
compared with earlier global metabarcoding studies, and it is no-
table that PacBio is considerably less prone to bias regarding ITS 
length variation than other technologies (Castaño et al., 2020). The 
18S rRNA gene libraries of non-fungal eukaryotes were ligated with 
Illumina adaptors using the TruSeq DNA PCR-free library prep kit 
(Illumina, San Diego, CA, USA) and sequenced on the Illumina MiSeq 
platform, using a 2 × 250 bp paired-read sequencing approach, at 
Asper Biogene (Tartu, Estonia).
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2.3.2  |  Prokaryotes

Prokaryotic primers 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 
926R (5′-GGCCGYCAATTYMTTTRAGTTT-3′) were used to amplify 
the 16S rRNA variable V4 region (Caporaso et al., 2011; Parada 
et al., 2016). Both primers were equipped with unique 12-base Golay 
barcodes for multiplexing.

The PCR was performed in two replicates per sample in a 25 µl 
reaction volume containing 5 µl of 5× HOT FIREPol Blend MasterMix 
(Solis Biodyne), 0.5 µl of both forward and reverse primer (20 mM) 
and 1 µl of the DNA extract (the remaining volume was filled with 
nuclease-free water). The PCR amplification program included the 
following steps: 95°C for 15 min, followed by 25 cycles of 95°C for 
30 s, 55°C 30 s and 72°C for 1 min, with a final extension step at 
72°C for 10 min. The duplicate PCR products were pooled and vi-
sualized on 1% agarose gel. Initially, 25 cycles were used for all the 
samples, and in cases where the gel band was weak or there was no 
PCR product a higher number of PCR cycles was used (maximum of 
30 cycles). Negative and positive controls were included throughout 
the process.

The PCR products were purified using a FavorPrepTM GEL/PCR 
Purification Kit (Favorgen Biotech Corporation). The libraries were li-
gated with Illumina adaptors using the TruSeq DNA PCR-free library 
prep kit (Illumina). Libraries were sequenced on the Illumina MiSeq 
platform, using a 2 × 250 bp paired-read sequencing approach, at 
Asper Biogene (Tartu, Estonia).

Raw reads from this targeted locus study have been deposited in 
the NCBI SRA (BioProject PRJNA659159).

2.4  |  Bioinformatics

2.4.1  |  Eukaryotes

ITS PacBio CCS reads (minPasses = 3, MinAccuracy = 0.9) were 
generated using SMRT Link v.6.0.0.47841. Subsequent quality filter-
ing was performed using PipeCraft v.1.0 (Anslan et al., 2017) as de-
scribed by Tedersoo and Anslan (2019), yielding 3,544,553 cleaned 
reads. Flanking regions (SSU and LSU) were extracted and removed 
using ITSx (v.1.1.3; Bengtsson-Palme et al., 2013), leaving 2,425,323 
reads. UNITE v.8.2 (all eukaryotes; Kõljalg et al., 2013) served as a 
reference database for chimera filtering and identification. Chimera 
checking retained 2,189,815 potential chimera-free sequences. 
Using VSEARCH (v.2.14.1; Rognes et  al.,  2016), sequences were 
clustered into 98,483 operational taxonomic units (OTUs; singletons 
removed) at 98% sequence similarity using the abundance option 
to allow separation of closely related species while keeping lower-
quality sequences and rare variants adhered to OTU centroids. 
Global singletons were removed.

For taxonomic assignment, we evaluated the 10 best hits and 
conservatively kept OTUs with conflicting best matches unidenti-
fied at the level of that taxonomic rank. BLAST (v.2.11.0+; Camacho 
et al., 2009) hits were evaluated using an alignment criterion of 80% 

of the shorter read (query or reference) to remove putative chime-
ric reads that passed the chimera checking. BLAST against UNITE 
identified 57,679 OTUs (1,796,814 reads). Sequences were assigned 
to taxonomic levels as follows: orders, families and genera were 
assigned at >80, >85 and >90% sequence similarity, respectively. 
Fungal taxa [taxonomy follows Tedersoo et al. (2018) as updated by 
Wijayawardene et al. (2020)] were used at the level of phyla (early 
diverging lineages), classes (Chytridiomycota, most Mucoromycota) 
and orders (Dikarya, moulds) to balance between taxonomic resolu-
tion and coverage.

To assign functions [arbuscular mycorrhizal (AM), ectomycor-
rhizal (EcM), multitroph, pathogen and saprotroph] to fungal OTUs, 
we took two parallel approaches. First, we used the newly built 
FungalTraits database (Põlme et al., 2020) to assign OTUs to guilds 
and EcM fungi further to lineages and exploration types. For gen-
era with multiple lifestyles, we used the assignments based on an-
notations at the level of sequences and species hypotheses (SHs) 
as given in UNITE. A fungal function was assigned to 44,258 OTUs 
using FungalTraits (AM: 4,645 OTUs, 35,615 reads; EcM: 7,754 
OTUs, 457,701 reads; multitroph: 9,067 OTUs, 299,120 reads; 
pathogen: 3,323 OTUs ,81,127 reads; saprotroph: 19,469 OTUs, 
639,066 reads). Other microbial eukaryotic organisms (2,711 OTUs, 
149,061 reads) and plants (1,495 OTUs, 58,066 reads) were also re-
tained; the remaining 9,215 OTUs (77,058 reads) that achieved only 
low identity or alignment (<80%) BLAST hits against the groups of 
interest, or were not matched against the FungalTraits database 
(for fungal OTUs), were discarded. Plant OTUs were distinguished 
into Tracheophyta, algae and Bryophyta. Sequence counts and 
functional annotations for eukaryotic ITS OTUs are given in the 
Supporting Information (Dataset S2).

The 18S rRNA gene animal data were analysed using the gDAT 
pipeline (Vasar et  al.,  2021). Demultiplexed paired-end reads were 
analysed in the following way: barcode and primer sequences were 
matched, allowing one mismatch for both pairs. Only pairs where 
both reads had an average quality score of >30 were retained (after 
removal of barcode and primer sequences). Quality filtered paired-end 
reads were combined using FLASh (v.1.2.10; Magoč & Salzberg, 2011) 
with the default parameters (10–300 bp overlap with ≥75% identity). 
Orphan reads (paired-end reads that did not meet the conditions for 
combination) were removed from the analyses, leaving 18,492,667 
cleaned sequences. The VSEARCH chimera filtering algorithm was 
used to remove putative chimeric reads in de novo mode, yielding 
18,104,321 chimera-free sequences. Reads were clustered with 
VSEARCH at 98% identity into 82,736 OTUs (excluding singletons). 
Representative sequences (OTU centroids) for each non-singleton 
OTU were classified taxonomically using a BLAST search followed by 
selection of the best hit against the well-curated Protist Ribosomal 
Reference database (v.4.12.0; Guillou et al., 2012), resulting in 49,455 
hits. Animals were filtered based on three phylum groups (Annelida, 
Nematoda and Arthropoda), resulting in 4,185 OTUs and 1,258,416 
reads. Samples with >1,000 reads were retained for analysis. Sequence 
counts and functional annotations for animal 18S OTUs are given in 
the Supporting Information (Dataset S3).
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2.4.2  |  Prokaryotes

Bioinformatic treatment of 16S rRNA gene prokaryotic data fol-
lowed the protocol used for animal data, as described above, 
aside from the following details. Quality filtering and cleaning 
left 14,593,006 cleaned sequences; chimera filtering yielded 
13,960,691 chimera-free sequences that were clustered at 99% 
identity (following the recommendation by Edgar,  2018) into 
165,330 OTUs (excluding singletons). Representative sequences 
(OTU centroids) for each non-singleton OTU were classified taxo-
nomically using a BLAST search against the SILVA database (v.132; 
Pruesse et al., 2007), taking the lowest common ancestor, result-
ing in 141,959 hits. Prokaryotic OTUs (141,828 OTUs, 4,935,514 
reads) were distinguished into bacteria (140,343 OTUs, 4,859,933 
reads) and archaea (1,485 OTUs 75,581 reads). The remaining 
23,502 OTUs (9,025,117 reads), for which taxonomic resolution 
was low or missing (lower than family), were omitted. Functional 
profiles for prokaryotic taxa (C-cycle, chemotrophs, chemohet-
erotrophs, N-cycle and parasites) were mapped to 44,857 OTUs 
using FAPROTAX (v.1.2.4; Louca et  al.,  2016). Sequence counts 
and functional annotations for prokaryotic 16S OTUs are given in 
the Supporting Information (Dataset S4).

2.5  |  Statistical methods

2.5.1  |  Data transformation

Preliminary rarefying of samples with high read counts indicated 
that full sample composition could be estimated accurately by sub-
sampling ≥1,000 reads. Therefore, this sample size was used as a 
minimum threshold in each data matrix, and samples with <1,000 
reads were excluded from the rest of the analysis. To normalize the 
remaining sequence count data, we implemented the variance sta-
bilizing transformation (using the R package DESeq2 v.1.28.1; Love 
et  al.,  2014), as suggested by McMurdie and Holmes  (2014). The 
method uses fitted dispersion–mean relationships to normalize data 
with respect to sample size (sequencing depth of individual samples) 
and variance.

2.5.2  |  Large-scale pattern in soil biodiversity

We used unsupervised k-means clustering to identify global patterns 
in the composition of a number of soil organism groups: prokaryotes, 
in addition to bacteria and archaea separately; microbial eukaryotes, 
in addition to fungi and component fungal guilds (AM, EcM, multi-
trophic, pathogenic and saprotrophic) separately; and plant and ani-
mal macro-organism groups.

For each group, principal coordinates analysis (PCoA) vec-
tors derived from a Bray–Curtis distance matrix were included 
in the k-means clustering algorithm. Clustering with values of k = 
2–16, with 100 random starting configurations per k, was used. 

Silhouette plots (Supporting Information Figure  S1) were used to 
ascertain the best-fitting cluster configurations among the range 
of k-values. Bootstrapping was used to assess the stability of clus-
tering solutions (Hennig, 2007), with Jaccard similarity of empirical 
and bootstrapped clustering configurations calculated (Supporting 
Information Figure S1). For microbial eukaryotic (ITS) communities, 
the best-supported values were k = 2, 3, 4 and 7, and for prokary-
otes, k  =  2, 3, 4 and 6. We focused on the higher values of k for 
comparison with existing biome classifications.

Cluster maps were interpolated using weighted categorical k-
nearest neighbour (KNN) classification [kknn() in the R package 
kknn; Schliep & Hechenbichler, 2016], using the soil sample cluster 
identities as the training set and a 0.5° × 0.5° map grid as the test set. 
The weights were based on great-circle distances of the k nearest 
training set points from the respective test set grid point. Grid cell 
cluster identity represents the class with the highest probability in 
the KNN prediction at that particular point. The k-value (k = 18) for 
KNN was set as the rounded square root of the number of samples, 
based on the suggestion of Duda et al. (2012). Greenland and the 
Sahara region were excluded from the interpolation owing to insuf-
ficient sampling and contrastingly different abiotic conditions. The 
composition of microbiome classes was calculated in relationship 
to the fungal (AM, EcM, multitrophic, pathogenic and saprotrophic) 
and prokaryotic guilds (C-cycle, chemotrophs, chemoheterotrophs, 
N-cycle and parasites) and the plant (Tracheophyta, algae and 
Bryophyta) and animal (Annelida, Arthropoda and Nematoda) tax-
onomic groupings.

2.5.3  |  Drivers of global soil communities

Abiotic drivers of eukaryotic and prokaryotic soil communi-
ties were identified using distance-based redundancy analysis 
(dbRDA; “vegan” package in R; Oksanen et al., 2020) and general-
ized dissimilarity modelling (gdm; Guerin et al., 2021). dbRDA can 
incorporate categorical predictor variables, whereas gdm allows 
nonlinear effects to be identified and a spatial distance matrix to 
be incorporated directly. In the dbRDA analyses, the variation in 
sample distance matrices (Bray–Curtis distance following variance 
stabilizing transformation) was modelled against measured abiotic 
variables. A set of independent predictor variables for inclusion 
in models was selected based on pairwise correlations and vari-
ance inflation factors (VIFs) in full models, retaining the variables 
that exhibited the strongest explanatory power. Thus, we removed 
N (correlated with organic carbon, r  =  0.83) and Mg (correlated 
with Ca, r  =  0.5) from final analyses (all variable VIF values for 
final models ≤2.64). The significance of effects was measured 
using permutation (n = 999). In gdm models, all continuous abiotic 
variables were included along with a great earth circle distance 
matrix representing spatial distances between sampling locations. 
The importance and significance of variables in gdm models were 
measured by calculating the change in deviance between full mod-
els of intact data and models calculated after permutation of the 
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variable of interest. Nonlinear effects were visualized by plotting 
variable I-splines.

Correlation between organism guilds was measured using 
Procrustes correlation (the Procrustes function from vegan). For 
each guild, a Bray–Curtis distance matrix was decomposed into a 
series of vectors using PCoA, and the two matrices of PCoA vectors 
were included in the Procrustes analysis. In the analysis, only vec-
tors with positive eigenvalues were used, and where the number of 
positive vectors differed between matrices, the minimum number of 
vectors was included for both sets. The significance of correlation 
was assessed using permutation (n = 999). Variation in Procrustes 
residuals, which indicates the local strength of correlation, was an-
alysed in relationship to the measured abiotic variables using linear 
models.

3  |  RESULTS

3.1  |  Soil microbiomes

For microbial eukaryotes, k-means clustering (k  =  7) revealed two 
series of community clusters, arranged along the temperature gradi-
ent (Figure 1a): clusters “cold acid” → “cool acid” → “temperate acid 

wet” → “tropical acid wet” reflecting increasing temperature in acid 
soil conditions; and clusters “cool basic” → “temperate basic dry” → 
“tropical basic dry” reflecting increasing temperature in basic soil 
conditions (in warmer conditions, the clusters also diverged with 
respect to precipitation conditions). The broader microbial eukary-
otic clusters (lower values of k) primarily represented climatic zones 
with some modification owing to the impact of soil pH (Supporting 
Information Figure  S2a–c). Prokaryotic k  =  6 clustering revealed 
two series of clusters arranged along the pH gradient (Figure  1b): 
clusters “cool acid” → “cool intermediate” → “cool basic” reflecting 
increasing pH in cool climates; and clusters “warm acid” → “warm 
intermediate” → “warm basic” reflecting increasing pH in warm cli-
mates. The broader prokaryotic clusters (lower values of k) primarily 
represented edaphic types, with modifications owing to the impact 
of temperature (Supporting Information Figure S2d–f). Fungal guild 
clusters largely matched the overall eukaryotic classification; bac-
terial and archaeal clusters largely matched the overall prokaryotic 
classification; and both plant and animal clusters represented com-
plex combinations of climatic and edaphic conditions, with some re-
gional differentiation (Supporting Information Figure S3).

Guild structure varied significantly between clusters (Figure 2; 
Supporting Information Figure S4), with microbial eukaryotic clus-
ters “cool basic” and “temperate acid wet” characterized by the 

F I G U R E  1  Clusters of global soil biodiversity. (a,b) Global maps showing the distributions of clusters of (a) microbial eukaryotic and (b) 
prokaryotic soil communities. Clusters were defined using k-means clustering [k = 7 for microbial eukaryotes (ITS); k = 6 for prokaryotes 
(16S)], and cluster distribution was interpolated using k-nearest neighbour (k = 18) spatial interpolation. Colour intensity denotes the 
confidence of the assignment for the most credible cluster identity. Greenland and the Sahara region were excluded from the maps because 
of insufficient sampling and contrastingly different abiotic conditions. (c,d) Positions of clusters along axes of pH, MAT and MAP for (c) 
microbial eukaryotes and (d) prokaryotes, respectively. Ellipses around cluster centroids are standard deviational ellipses. Note that plants 
and soil animals (18S) are not included in the soil microbial eukaryotic calculations. MAP = mean annual precipitation; MAT = mean annual 
temperature 

(a) (b)

(c) (d)
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highest and the cluster “tropical acid dry” by the lowest proportional 
abundance of EcM fungi, and cluster “temperate basic dry” by the 
highest abundance of AM fungi. The northern-most plant commu-
nity cluster contained the highest share of bryophytes (cluster 1; 
Supporting Information Figures S4 and S5). Prokaryotic communi-
ties were dominated by chemoheterotrophs, but there was a higher 
share of C-cycle-related prokaryotes in the cluster “cool acid” and 
of N-cycle related prokaryotes in the cluster “warm intermediate” 
(Supporting Information Figures  S2 and S4). Among animal com-
munities, there was a higher share of Nematoda in a widespread 
Northern Hemisphere cluster (cluster 1) and of Arthropoda in a 
cluster with a broadly subtropical distribution (cluster 4; Supporting 
Information Figures S4 and S5). Notably, consistent differences in 
vegetation structure (e.g., forests vs. grasslands), which are defin-
ing criteria for existing biome classifications, were not apparent in 
microbial eukaryotic or prokaryotic clusters (Figure  3; Supporting 
Information Figure S4).

3.2  |  Drivers of soil microbiome structure

We recorded strong correlations in community composition be-
tween microbial eukaryotes, prokaryotes, plants and animals, in ad-
dition to their component guilds (pairwise Procrustes correlations 
all in the range of 0.69–0.96; correlations with Procrustes residuals 
in Supporting Information Dataset S5). Reflecting this high level of 
covariation, we found that different soil organism groups exhibited 
similar relationships with environmental variables, with MAT and soil 
pH consistently the most important drivers of community composi-
tion among different eukaryotic and prokaryotic groups (Supporting 
Information Figures S6–S8; Table S1).

Most organism groups exhibited low community turnover in 
space, with relatively high turnover apparent only among mycorrhi-
zal fungal and animal communities. There was also weak differen-
tiation of soil biota between biogeographical realms (for instance, 
samples from Afrotropic and Neotropic realms clustered together on 
ordination plots; Supporting Information Figure S6) and in relation-
ship to historical biome continuity (whether or not the biome has ex-
isted undisturbed for >21 kyr; Supporting Information Table S1). The 
presence of potential ecosystem engineers, in the form of EcM fungi, 
also had weak to moderate effects on other soil organism groups 
(Supporting Information Table S1).

4  |  DISCUSSION

Many issues related to large-scale pattern in biodiversity, ranging 
from environmental education to unravelling the consequences of 
global-scale ecological processes, are informed by biome descrip-
tions, which provide a simplified representation of the structure of 
life on Earth. We used empirical soil biodiversity data and a statisti-
cal clustering approach to define soil microbiomes and show how 
these reflect the importance of edaphic variables, notably soil pH. 

The structure of soil microbiomes deviates importantly from existing 
terrestrial biome classifications, highlighting the drawbacks of using 
the latter as a surrogate for variation in soil microbial diversity, while 
also providing a practicable empirical alternative.

4.1  |  Soil microbiomes in the context of existing 
terrestrial biomes

The soil microbiome types defined here show limited overlap with 
existing terrestrial biome classifications, which is consistent with 
emerging evidence of mismatches between the distribution pat-
terns of above- and belowground organisms (Cameron et al., 2019). 
The proposed prokaryotic biome types are not paralleled by any 
existing biome (Mucina, 2019) or soil type classification (Hartemink 
et al., 2013), nor do they resemble the five bacterial ecological groups 
distinguished by Delgado-Baquerizo, Reich, Trivedi, et al. (2020: high 
pH, low pH, drylands, low plant productivity and dry-forest environ-
ments). The proposed microbial eukaryotic biome types also show 
little similarity to the biome system of Olson et al. (2001) (Figure 3; 
Supporting Information Figure S9). By contrast, similarity with the 
classifications of Whittaker  (1975) and Walter  (1976) is relatively 
high for biomes in warmer climates, but weaker for those in colder 
climates (Supporting Information Figure  S9). Soil leaching and ac-
companying decreases in pH are more intense in warm and humid 
conditions (Slessarev et al., 2016), with the results particularly evi-
dent in older soils (Delgado-Baquerizo, Reich, Bardgett, et al., 2020). 
In cold environments, which include younger deglaciated soils, pH 
is expected to be more closely dependent on the mineralogy of 
the bedrock. Thus, precipitation, which partly defines Whittaker's 
and Walter's biomes, is likely to change in parallel with pH in warm 
environments (where higher precipitation is associated with lower 
pH) but less so in cold environments. In our dataset, the correla-
tion between pH and precipitation was indeed stronger at warm 
(above median temperature; r = −0.56, p <  .001) than cold (below 
median temperature; r = −0.19, p = .01) sites. Regional studies have 
shown a contrast between vegetation on acid and basic soils in sub-
polar and alpine (Lenoir et al., 2010; Virtanen et al., 2006), boreal 
(Chytrý et al., 2012; Noreika et al., 2019) and temperate (Axmanová 
et  al.,  2012; Chytrý et  al.,  2003) climatic zones, and Tedersoo, 
Anslan, et al. (2020) found analogous differences in fungal commu-
nities. The proposed microbial eukaryotic biome types reflect this; 
only in warmer areas do biomes separate along the precipitation 
gradient. Hence, using global terrestrial biomes as a framework for 
the study of prokaryotic biogeography or that of soil eukaryotes in 
higher latitudes appears to be of particularly low value.

The distribution of soil microbiomes reflects recorded rela-
tionships between soil communities and potential abiotic driv-
ers, and earlier studies on this question. Soil pH and MAT were 
consistently among the strongest drivers of composition of dif-
ferent groups, corroborating earlier findings (Delgado-Baquerizo 
et al., 2018; Tedersoo et al., 2014; Větrovský et al., 2019), and the 
major groups of eukaryotes and prokaryotes in soil consistently 



    |  1127VASAR et al.

exhibited parallel variation at the global scale (see also local case 
studies of plant and soil microbial communities: Neuenkamp 
et al., 2018; Nottingham et al., 2018). Spatial constraints on dis-
tribution were most apparent among mycorrhizal fungi and soil 
animals, perhaps reflecting the necessity to associate with an ap-
propriate host (mycorrhizal fungi; Tedersoo et al., 2020) or weak 
dispersal ability (soil animals; Wu et al., 2011). Meanwhile, the 
importance of unique regional history and the presence of eco-
system engineers, such as EcM trees (Tedersoo & Bahram, 2019), 
for soil biota appears relatively weak in comparison to other driv-
ers. The present study focused on relatively natural ecosystems, 
hence the biotic communities emerging from pronounced inter-
action with anthropogenic activities (i.e., anthropomes; Ellis & 
Ramankutty, 2008) were not considered explicitly. It is likely that 
the relationships and emergent global patterns described here 
exhibit significant local variation in relationship to human activi-
tes, such as urbanization, agriculture and forestry (e.g., Carvalho 
et al., 2016; Moora et al., 2015; Schmidt et al., 2017).

Terrestrial biomes characterized by macro-organisms are clearly 
not predictive of patterns in soil microbial diversity and vice versa. 
Besides describing the ecology of the different organism groups 
involved, this might reflect the distinction between structure and 
diversity, which is mediated by organism functional and disper-
sal traits (Kivlin et  al.,  2014; Locey,  2010; Martiny et al., 2011). It 
is also important to note that, conceptually, biomes should not be 
considered single-level, simple community structures; rather, they 
are constructs of multiple levels of complexity, reflecting the hierar-
chy of evolutionary and ecological drivers. Mucina et al. (2021) have 
proposed the currently lowest-tier terrestrial biome classification, 
regional biomes (sensu Mucina et  al.,  2021), in order to represent 
precisely the joint effects of climatic and soil characteristics. We 
envisage that such a regional-scale comparison could yield a better 
fit between terrestrial biomes and soil microbiomes. Moreover, the 
disparity between the terrestrial biome structures derived on the 

basis of vegetation formations and the soil microbiomes does not 
preclude their parallel use. Each of these schemes, when applied ap-
propriately, brings different insights into the patterning and dynam-
ics of global biodiversity.

4.2  |  Application of soil microbiomes

Incorporating a microbial component into biogeographical and 
macroecological frameworks that rely on defining large-scale 
biotic community structure is important for attempts to under-
stand, predict and mitigate global change (Boit et al., 2016) and, 
in particular, those addressing changes in soil microbial diversity 
and functionality (Xu et al., 2020). For instance, soil microbiomes 
can inform sampling designs and provide explanatory variables for 
large-scale microbial ecology studies. Moreover, they would allow 
a microbial component to be added to global ecosystem mod-
els that are usually dominated by parameters pertinent to mac-
robiotic elements (e.g., plant and plant guilds, vegetation types). 
Furthermore, and perhaps surprisingly, the distinction between 
grassland and forest ecosystems (open vs. closed; one of the core 
tenets of any terrestrial biome scheme) does not emerge in the 
soil microbiome classification (Figure  3; Supporting Information 
Figures  S4 and S9). As shown for R.  H. Whittaker's biome clas-
sification, a large fraction of the temperature × precipitation fac-
tor space provides habitat suitable for both forest and grassland 
(Bond, 2005). Yet, routinely, forest and grassland biomes are con-
sidered separately; for example, by restricting sampling to one or 
the other, or routinely focusing on different microbial functions 
in each (Garland et al., 2021), based on the assumption that they 
represent coherent units with different features and relevance. It 
might well be that the characteristics of the microbial communities 
targeted by such studies in fact transcend the traditional forest 
and grassland biome dichotomy.

F I G U R E  2  Relative contribution of different guilds and functional groups to clusters of microbial eukaryotic and prokaryotic diversity in 
soil. (a) Microbial eukaryote (ITS) clusters (n = 7). (b) Prokaryote (16S) clusters (n = 6). Each grid shows the relative magnitude of standardized 
Pearson residuals from χ2 analysis (statistics shown below each panel) of a contingency table comprising read counts per guild in each 
cluster. Red cells indicate a positive association between guilds and clusters; blue hashed cells indicate negative associations. Colour 
intensity indicates the relative size of the residuals. The “other” category in panel (a) reflects non-fungal microbial eukaryotes 

(a) (b)
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4.3  |  Conclusions

Focusing on the large-scale distribution of soil microbial com-
munities can lead to important changes in our views about the 
global distribution of biological diversity. Correcting these views 
will help us to understand the natural world and to arrive at opti-
mal decisions in response to the threats posed by global change. 
We advocate the use of empirical data to define soil microbiomes. 
However, we are aware that our study is only the beginning of 
the journey; a journey that should address the effects of spatial, 
temporal and taxonomic scales of sampling, identify the most in-
formative environmental parameters and pattern-inference tools, 
and build large data archives.
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